
RandomizedSampling for LargeZero-SumGames ⋆,⋆⋆

Shaunak D. Bopardikar a, Alessandro Borri b, João P. Hespanha c, Maria Prandini d,

Maria D. Di Benedetto e

aUnited Technologies Research Center Inc., Berkeley, CA, USA

bIstituto di Analisi dei Sistemi ed Informatica “A. Ruberti”, Consiglio Nazionale delle Ricerche (IASI-CNR), Rome, Italy.

cCenter for Control, Dynamical Systems and Computation, University of California at Santa Barbara, CA 93106, USA

dDipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

eDepartment of Electrical and Information Engineering, University of L’Aquila, Italy

Abstract

This paper addresses the solution of large zero-sum matrix games using randomized methods. We formalize a procedure,
termed as the sampled security policy (SSP) algorithm, by which a player can compute policies that, with a high confidence,
are security policies against an adversary using randomized methods to explore the possible outcomes of the game. The SSP
algorithm essentially consists of solving a stochastically sampled subgame that is much smaller than the original game. We also
propose a randomized algorithm, termed as the sampled security value (SSV) algorithm, which computes a high-confidence
security-level (i.e., worst-case outcome) for a given policy, which may or may not have been obtained using the SSP algorithm.
For both the SSP and the SSV algorithms we provide results to determine how many samples are needed to guarantee a
desired level of confidence. We start by providing results when the two players sample policies with the same distribution and
subsequently extend these results to the case of mismatched distributions. We demonstrate the usefulness of these results in
a hide-and-seek game that exhibits exponential complexity.
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1 Introduction

This paper addresses zero-sum games in which one or
both players are faced with a large number of choices,
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possibly infinitely many. For such games, the computa-
tion of security levels (i.e., worst-case outcomes) and the
corresponding security policies requires the exploration
of very large decision trees.

Games where players are faced with deciding among a
very large number of options arise in combinatorial prob-
lems, where the number of possible options grows expo-
nentially with the size of the problem. This situation is
common to many domains: In path planning, the number
of possible decisions typically increases exponentially
with the number of points to visit (cf., e.g., [4]). In net-
work security, system administrators need to consider
multi-stage, multi-host attacks that may consist of long
sequences of actions by an attacker in their attempt to
circumvent the system defenses (cf., e.g., [27]). In prac-
tice, this leads to policy spaces that grow exponentially
with the number of stages involved in an attack. More
generally, in partial-information feedback games players
must choose feedback policies that assign an action to
each possible observation and therefore the number of
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feedback policies grows exponentially with the size of the
players’ observation spaces (cf., e.g., [22,7]).

The exploration of large policy spaces is generally a hard
task that can become computationally intractable when
addressing partial information games (NP-complete in
the size of the game tree, see [19]). A method to face this
issue is Monte Carlo sampling. The key idea is to confine
the search to a decision tree of reduced size by guessing or
sampling the other player’s moves, and then use conven-
tional minimax search to determine the strategy to play
with. Techniques based on this idea has been successfully
applied to several partial information games such as, e.g.,
Scrabble (cf. [18]), Bridge (cf. [21]), and Kriegspiel chess
(cf. [29]). The survey paper [9] shows how Monte Carlo
sampling has becoming increasing popular and has been
extensively adopted, not only in the game context, but
also in other domains such as e.g. path planning. Indeed,
when the underlying system is stochastic but it is diffi-
cult to derive an analytic description of the probabilistic
distribution characterizing its evolution, solutions based
on simulation are typically adopted, which entails the
use of Monte Carlo sampling.

The recent successes in using randomized methods to
explore large decision trees (e.g., in [25,23,9]) motivates
the question that is behind the results in this paper: Sup-
pose that my opponent is using a randomized algorithm
to explore the game decision tree, can I produce a security
value and an associated security policy that are correct
with high probability? The answer to this question is af-
firmative and we show that such security values/policies
can be constructed using randomized algorithms. What
is somewhat surprising about the results reported is that
one can obtain high-confidence security policies by re-
stricting ones attention to a subset of policies that can
be much smaller than the total set of policies available
to the players. Moreover, this restricted set of policies
may be quite different from the set of policies that the
opponent considered in her randomized exploration of
the game decision tree.

We call sampled security policy (SSP) the randomized al-
gorithm proposed to obtain high-confidence security val-
ues/policies. The SSP algorithm can be described as fol-
lows: Suppose that player P2 selected a policy based on a
random exploration of the policies available to both play-
ers. The precise algorithm used by P2 to select her policy
based on this extraction is typically unknown. Player P1

should then proceed as follows: randomly select a sub-
set of the total set of available policies to both players;
construct the zero-sum matrix game corresponding to
the selected subset of policies, ignoring all other poli-
cies available to the two players ; and compute the se-
curity value/policies associated with the matrix. Player
P1 can select either a mixed or a pure value/policy. In
both cases, since a large number of policies have been
ignored, the security policies obtained by this process
will generally not be security policies for the whole game

and therefore player P1 may obtain an outcome that is
strictly worse than the value computed based on her sub-
matrix. However, we show that this happens with low
probability as long as the size of the submatrix is suf-
ficiently large. Moreover, this result holds regardless of
the algorithm used by P2 to compute her policy based
on the random tree exploration. In fact, P2 could also
be using the SSP algorithm to compute her own policy.

Related Work

Two-player zero-sum matrix games have been stud-
ied extensively over the past decades (cf. the textbook
by [3]). The classical Mini-Max theorem (cf. [35]) guar-
antees the existence of an optimal pair of strategies for
the two players, each of which is a security policy for
the corresponding player. However, when the matrix
is of large size, the computation of the optimal strate-
gies involves solving optimization problems with a large
number of variables and constraints.

A probabilistic approach has proven to be computation-
ally efficient in evaluating large sized games. Using prob-
abilistic analysis, the existence of simple, near-optimal
strategies over a subset with logarithmically smaller size
of the original matrix game was established in [26]. A
popular method to solve win-lose type of multi-stage or
dynamic games is to evaluate the root of a game tree, in
which every node is alternately an AND and an OR op-
eration, while the leaves have a value of either 0 or 1. [28]
presents randomized algorithms to evaluate such game
trees more efficiently than deterministic algorithms.

Randomized methods have been successful in provid-
ing efficient solutions to complex control design prob-
lems with probabilistic guarantees. [24] adopts a prob-
abilistic approach to show the existence of randomized
algorithms with polynomial complexity to solve com-
plex robust stability analysis problems. [30] proposes a
randomized method for a probabilistic analysis of the
worst-case controller performance, and determine sam-
ple size bounds. More recently, [31] discusses the appli-
cation of randomized methods to several control design
problems in the presence of uncertainty. Randomized
methods have also been used to provide a probabilistic
approximation to the minimax value of a cost function
in robust control design problems (cf. [20]). Their sam-
ple complexity requirement is, in general, much higher
than for the notion of security that we propose in this
paper, since they are concerned with the sampled mini-
max value being close to the global minimax value with
high confidence. A randomized approach is used in the
linear programming reformulation of approximate dy-
namic programming in [16]. [33,34] demonstrate the use
of randomized algorithms to solve control design prob-
lems and a number of well known complex problems in
matrix theory through a statistical learning approach.
Statistical learning theory [32] provides a framework for
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probabilistic robust control synthesis. Using these tools,
[1] considers semi-infinite optimization problems under
uncertainty with a possibly non-convex objective func-
tion.

In [12,14,13], the authors introduce the so-called sce-
nario approach to solve convex optimization problems
with an infinite number of constraints. Applications of
this approach to systems and control are discussed in
[12] and in [15]. [10] and [11] study the sample complex-
ity of randomized approaches to system analysis and de-
sign, and provide, in particular, an explicit expression
of the sample-size for the scenario approach to convex
optimization based on an approximation of the implicit
expression given in [14]. These bounds were further re-
fined in [2]. The results in these papers are instrumental
to establish several of the results in the present paper.

Contributions

Throughout the paper, we explain the results from the
perspective of the player P1 — the minimizer, — who
finds herself playing against an opponent P2 — the max-
imizer, — who computes her policy based on a random
exploration of the game decision tree.

The contributions of this paper are four-fold. First, we
show that the SSP algorithm provides a security policy
for P1 with probability 1 − δ, provided that the size
of the subgame solved by P1 is sufficiently large. We
provide two bounds on the size of the subgame, one that
is valid whenP1 uses general mixed policies and the other
when P1 is restricted to consider only pure policies. The
latter may require much smaller submatrix sizes when
the entries of the matrixA take values in a finite set. The
bounds are game independent and can be computable
a-priori for any desired confidence level 1 − δ, δ > 0.
While the size of the subgame grows with the desired
confidence level 1− δ, it is completely independent of the
size of the original matrix game, which could, in fact, be
even infinite and not even have a value. Moreover, this
bound is also independent of the precise algorithm that
P2 uses to construct her policy based on the portion of
the tree that she explored.

The results outlined above assume that, while P1 does
not know the precise subtree that P2 explored to com-
pute her policy, P1 does know the distribution that P2

used to construct her random subtree. When this is not
the case, there will be a mismatch between the distri-
bution that P1 uses in the SSP algorithm and the dis-
tribution that P2 uses for her random exploration. The
second contribution of the paper addresses this issue via
two approaches. The first approach adopts sample com-
plexity bounds obtained in [17], which deals with the
so-called ambiguous chance constrained problems. More
precisely, we determine bounds on the sizes of the sub-
matrices in the SSP algorithm when the mismatch be-
tween the distributions used by the two players remains

below a specified distance ρ < 1, measured in the Pro-
horov metric. This approach requires no knowledge of
the matrix game, but the bounds hold only when the
confidence parameter satisfies the condition ρ < δ, for a
desired confidence level of 1 − δ. The second approach
is based on a novel characterization of the distance be-
tween the sampling distributions, which we call the mis-
match factor, and is applicable to any confidence level
1 − δ and any mismatch factor between the distribu-
tions. However, as one would expect, for a given con-
fidence lever, a large mismatch factor requires a large
number of samples. These results take advantage of the
game structure and, in fact, when the mismatch is asso-
ciated with policy domination, we show that the bounds
with mismatch are exactly the same as the ones with-
out mismatch. Essentially, this means that if P1 knows
that a particular subset Sworse-for-P2

of P2’s policies is
dominated by another subset of P2’s policies Sbetter-for-P2

(in the sense that Sworse-for-P2
is worse than Sbetter-for-P2

from P2’s perspective), then P1 need not sample policies
from Sworse-for-P2

. The benefit of the second approach
goes beyond investigating the confidence of the SSP algo-
rithm, as it extends the bounds of the scenario approach
derived in [13] and [2] to mismatched distributions.

Third, we propose a randomized algorithm, which we call
sampled security-value (SSV) that P1 can use to obtain
a high-probability security level for a given policy. The
bound on the size of the subgame that P1 extracts to de-
termine her high-probability security level holds for any
policy available to P1, regardless of whether or not this
policy was obtained from the SSP algorithm. As for the
SSP algorithm, the computation required by the SSV al-
gorithm is independent of the size of the original matrix
game and also of the precise algorithm that P2 uses to
construct her policy. When applied to a policy obtained
using the SSP algorithm for a confidence level δSSP, the
SSV algorithm can be used to study the security of the
policy for different (perhaps tighter) confidence levels δ.

Fourth and finally, we apply the SSP and SSV algo-
rithms to solve a hide-and-seek game, in which one player
hides a treasure in one of N points and the other player
searches for the treasure by visiting each of the points.
This is formalized as a zero-sum game in which the player
that hides the treasure wants to maximize the distance
that the other player needs to travel until the treasure is
found. To determine the optimal strategy for this game,
one would need to solve a matrix game whose size is
N × N !. Thus, exact solutions to this problem require
computation that scales exponentially with the number
of points N . Our approach is independent of the size of
the game and therefore the size of the matrix plays no
role in the amount of computation required.

As compared to the preliminary conference version [5],
this paper presents new results that include the version
of the SSP algorithm for pure policies and its analysis,
the mismatch in the distributions used by the players to
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construct the subgames, and improves upon the explicit
sample size bounds using the results in [2]. The more
recent paper [7] formalizes the sampling procedure to
dynamic or multi-stage, partial information games.

Organization

This paper is organized as follows. The problem formu-
lation and the SSP algorithm are presented in Section 2.
Bounds on the subgame size to provide high-confidence
SSP solutions are established in Section 3 for the case
when the two players use identical distributions to sam-
ple the matrix. These bounds are extended in Section 4
to allow mismatch between the distributions. Section 5
presents the SSV algorithm and the related bounds on
the size of the subgame. Finally, we demonstrate the
procedure applied to the search game in Section 6.

2 Problem Formulation

Consider a zero-sum matrix game defined by an arbi-
trary M ×N real-valued matrix A, in which player P1 is
the minimizer and selects rows and player P2 is the maxi-
mizer and selects columns.We are interested in problems
where the number N of (pure) policies available to P2

is very large, typically due to combinatorial explosion,
forcing P2 to explore a random subset of her own (pure)
policy space with only n2 ≪ N policies, and perhaps
also only a random subset of the possibles responses by
P1. Based on this, P2 selects a policy z∗ that she will use
to play against P1.

Denoting by Bk×ℓ the set of k × ℓ left-stochastic (0, 1)-
valued matrices (i.e., matrices whose entries belong to
the set {0, 1} with exactly one 1 per column), we can
express the process by which P2 samples her own pol-
icy space by selecting a random matrix Π2 from the set
BN×n2 . The matrix Π2 ∈ BN×n2 has one row for each of
the possible policies of P2 in the original game defined
by A and one column for each policy that was actually
explored by P2. A one in row i, column j of Π2 signi-
fies that the jth policy explored by P2 corresponds to
the column i of A. P2’s random exploration results in a
mixed policy z∗ that can be written as

z∗ = Π2z
∗
2 ∈ SN , z∗2 ∈ Sn2

, (1)

where, for a given integer k, Sk denotes the probability
simplex of size k. P1 may know the distribution used to
extract Π2, but will not know the matrix Π2 that was ac-
tually extracted nor which algorithm was used to deter-
mine z∗2 and therefore will not know the policy z∗ ob-
tained by P2.

For P1 to compute a high-confidence response against
P2’s policy z∗ in (1), we introduce the sampled security
policy (SSP) Algorithm 1.

Algorithm 1 [SSP Algorithm]

1: P1 randomly selects m1 rows and n1 columns of A,
which she uses to construct an m1 × n1 submatrix
A1 of A. This can expressed by the selection of two
randommatrices Γ1 ∈ BM×m1 and Π1 ∈ BN×n1 and
then computing the product A1 = Γ′

1AΠ1.
2: P1 computes the mixed security value V̄ (A1) and

the corresponding security policy y∗1 for A1:

V̄ (A1) = max
z∈Sn1

y∗1
′A1z = min

y∈Sm1

max
z∈Sn1

y′A1z

We call V̄ (A1) P1’s sampled security value. When
multiple security policies y∗1 exist, P1 selects for y∗1
the one with the minimum Euclidean norm (since
the set of security policies is convex, it contains a
unique element with minimum norm).

3: P1 computes her mixed policy for the original game:

y∗ := Γ1y
∗
1 ,

resulting in the outcome y∗′Az∗ = y∗1
′Γ′

1AΠ2z
∗
2 . We

call y∗ P1’s sampled security policy.

For the SSP algorithm to be useful, it needs to provide
appropriate guarantees of correctness, which are formal-
ized by the following definitions. We say that the SSP
algorithm is ǫ-secure for player P1 with confidence 1−δ if

PΓ1,Π1,Π2

(

y∗′Az∗ ≤ V̄ (A1) + ǫ
)

≥ 1− δ. (2)

Here and in the sequel, we use a subscript in the prob-
ability measure P to remind the reader which random
variables define the event that is being measured. In
essence, condition (2) states that the probability that
the outcome of the game will violate P1’s sampled secu-
rity value V̄ (A1) by more than ǫ is smaller than δ. As
stated, this definition requires the bound to hold regard-
less of the algorithm used by P2 to select her policy z∗.
In fact, we even allow z∗ to be obtained using an algo-
rithm that randomly explores P1’s policy space 1 . While
our results do not depend on it, P2 could have obtained
z∗ also using the SSP algorithm.

The previous definition guarantees that P1 will be sur-
prised with (low) probability δ when playing with poli-
cies obtained from a one-shot solution to the SSP algo-
rithm. However, no specific guarantee is given regard-
ing the inherent safety of the specific policy y∗ obtained
using the SSP algorithm. So, e.g., suppose that player
P1 computes y∗ once using the SSP algorithm and then
plays this policy multiple times against a sequence of
policies z∗ for P2, each obtained by a distinct random

1 In this case, the probability measure in (2) depends on
additional random variables that we do not explicitly include
in the subscript.
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explorations of her policy space. Then P1 could conceiv-
ably be surprised many more times than one would ex-
pect for a low value of δ. This would happen if she was
“unlucky” and got a (low probability) y∗ that is particu-
larly bad or a value V̄ (A1) that is particularly optimistic.
To avoid this scenario, we introduce an additional no-
tion of security that refers to the security of a specific
policy/value: we say that a policy y∗ with value V̄ (A1)
is ǫ-secure for player P1 with confidence 1− δ if

PΠ2

(

y∗′Az∗ ≤ V̄ (A1) + ǫ | y∗, V̄ (A1)
)

≥ 1− δ. (3)

Note that the subscript in the probability measure now
only includes the matrix corresponding to randomized
exploration of the policy space by P2 since the proba-
bility guarantees are given for a specific security policy
and value of P1.

So far, we have not specified the joint distribution of the
row/column extraction matrices Γ1 and Π1 for P1 in the
SSP Algorithm 1, but these distributions, jointly with
that of matrix Π2 for P2, clearly affect the outcome of
the algorithm. In the context of noncooperative games,
one should presume the extractions of the two players to
be independent of each other. For simplicity, we further
assume that players extract rows and columns indepen-
dently, as stated in the following assumption:

Assumption 2.1 (Independence) The random ma-
trices Γ1 and Π1 in the SSP Algorithm 1 and the matrix
Π2 corresponding to player P2’s randomized exploration
are statistically independent and each of them has inde-
pendent and identically distributed columns. 2

Under Assumption 2.1, we shall determine in Section
3 bounds on the size of the random matrices extracted
by P1 in the SSP Algorithm 1 that guarantee high-
confidence ǫ-security results with ǫ = 0. These results
are valid when P1 knows precisely the distribution used
by P2 to explore her game decision tree, i.e., to extract
columns of the game matrix A. If we allow for mis-
matched distributions, we can then prove ǫ-security re-
sults with a value for ǫ > 0 that depends on the distance
between the distributions used by P1 and P2 to extract
columns of A (see Section 4).

Remark 2.1 (General games) The results in this pa-
per do not depend on the fact that the original game is
a finite matrix game. They extend trivially to any cost-
function J(u, d), u ∈ U , d ∈ D where U and D denote
the sets of policies for the minimizer and maximizer, re-
spectively. In fact, it is not even necessary that the orig-
inal game has saddle-point policies since all that the re-
sults use is the fact that, when we take finite samples
of the sets of policies, we obtain finite matrix games. In
fact, these results also apply to dynamic games, as is
discussed in [7]. 2

3 Bounds for Probabilistic Guarantees

In this section, we present theoretical bounds on the
number of policies that player P1 needs to consider for
the SSP Algorithm to guarantee desired confidence lev-
els. The results in this section refer to the case where the
players sample policies for P2 (i.e., columns of A) using
identical distributions. This assumption is subsequently
relaxed in Section 4.

3.1 Mixed Sampled Security Policies

The main result of this section provides a bound on the
size of the submatrixA1 in the SSPAlgorithm that guar-
antees ǫ-security with ǫ = 0 for the mixed policy y∗.
We recall that P2 is assumed to use a policy z∗ of the
form (1), where Π2 is a column-selection matrix and z∗2
some vector in Sn2

that is obtained using a deterministic
or stochastic algorithm. The case of P2 using a sample
of P1’s policies to determine her policy z∗ also gets in-
cluded as none of the results in this paper require P2 to
use the same distribution as that used by P1 for extract-
ing rows of A.

Theorem 3.1 (SSP Algorithm) Suppose that As-
sumption 2.1 holds and that Π1 ∈ BN×n1 and Π2 ∈
BN×n2 have identically distributed columns. The SSP
Algorithm is (ǫ = 0)-secure for P1 with confidence 1− δ,
δ ∈ (0, 1) as long as 2

n1 =
⌈m1 + 1

δ
− 1

⌉

n̄2, (4)

with n̄2 ≥ n2. Additionally, suppose that we increase n1

to satisfy

n1 =
⌈1

δ

(

m1 +

√

2m1 ln
1

β
+ ln

1

β

)⌉

n̄2, (5)

for some β ∈ (0, 1). Then, with probability larger than
1 − β, the SSP Algorithm generates a sampled security
policy y∗ with value V̄ (A1) that is (ǫ = 0)-secure for P1

with confidence 1− δ. 2

In words, this result states that it is always possible
to guarantee (ǫ = 0)-security for P1, if she constructs
her submatrix A1 utilizing a sufficiently large number of
columns n1. In particular, she always needs to choose a
number of columns n1 larger than the number of columns
n2 that P2 is considering for her mixed policies [cf. (4)
and (5)]. The additional number of columns that P1

needs to consider is a function of the number m1 of rows
that P1 wants to consider for her mixed policy and the
desired confidence level.

2 Given a scalar x ∈ R, we denote by ⌈x⌉ the smallest integer
that is larger than or equal to x.
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The probability 1−β associated with y∗’s security prob-
abilistic guarantee accounts for the possibility that the
confidence bound (3) fails altogether due to an “unfortu-
nate” sample used by P1 to compute y∗. However, note
that only the logarithm of the confidence level β appears
(5) and therefore a relatively small value for the number
of columns n1 suffices to make β extremely small (and,
hence, 1− β ≃ 1).

Remark 3.2 (P1’s knowledge of n2) According to
Theorem 3.1, for player P1 to enjoy guaranteed (ǫ = 0)-
security with confidence 1− δ, she must know an upper
bound n̄2 on the number of columns that P2 used to con-
struct the policy z∗ in (1). However, if P1 does not know
n̄2 precisely and, e.g., underestimates n̄2 by a certain
percentage, then (4) and (5) are still useful in the sense
that they predict that the performance degradation in
the actual confidence level δ grows linearly with n̄2. This
is because the bounds in (4) and (5) scale with n̄2

δ
. 2

Proof of Theorem 3.1: By definition of the security value
V̄ (A1), we have that

V̄ (A1) = min
y∈Sm1

max
z∈Sn1

y′Γ′
1AΠ1z

= min
y∈Sm1

max
j∈{1,...,n1}

y′Γ′
1AΠ1ej(n1)

= min
θ∈Θ

{

v : y′Γ′
1AΠ1ej(n1) ≤ v, ∀j ∈ {1, . . . , n1}

}

,

(6)

where θ := (y1, v), Θ := Sm1
× R, and we use ej(n) to

denote the jth element of the canonical basis of Rn.

Since n1 is an integer multiple of n̄2, i.e., n1 = Kn̄2 with

K =
⌈

m1+1
δ

− 1
⌉

, we can use the Kn̄2 columns of Π1 ∈

BN×Kn̄2 to constructK independent and identically dis-
tributed (i.i.d.) matrices ∆1,∆2, . . . ,∆K ∈ BN×n̄2 . For
an arbitrary realization of the matrix Γ1 ∈ BM×m1 ,
which is independent of the ∆i by Assumption 2.1, let
us define the function fΓ1

: Θ× BN×n̄2 → R by

fΓ1
(θ,∆) = max

j∈{1,...,n̄2}
y′1Γ

′
1A∆ej(n̄2)− v. (7)

We can then rewrite (6) as

V̄ (A1) = min
θ∈Θ

{

v : fΓ1
(θ,∆i) ≤ 0, ∀i ∈ {1, . . . ,K}

}

(8)

and conclude from [13, Proposition 3] that the (condi-
tional) probability that another matrix ∆ sampled inde-
pendently from the same distribution as the ∆i satisfies
the constraint fΓ1

(θ∗,∆) ≤ 0 satisfies:

PΠ1,∆

(

fΓ1
(θ∗,∆) ≤ 0 | Γ1

)

≥
K −m1

K + 1
≥ 1− δ, (9)

where θ∗ denotes the value in Θ that achieves the min-
imum in (8) and the second inequality is a consequence
of (4). Since the minimum in (8) is achieved for the sam-
pled security policy/value θ∗ = (y∗1 , V̄ (A1)), we can use
the definition (7) of fΓ1

to re-write (9) as

PΠ1,∆

(

y∗1
′Γ′

1A∆ej(n̄2) ≤ V̄ (A1),

∀j ∈ {1, . . . , n̄2} | Γ1

)

≥ 1− δ.

Since n2 ≤ n̄2, we further conclude that

PΠ1,∆

(

y∗1
′Γ′

1A∆ej(n2) ≤ V̄ (A1),

∀j ∈ {1, . . . , n2} | Γ1

)

≥ 1− δ.

Under Assumption 2.1, when the columns of Π1 and Π2

are identically distributed, the matrix consisting of the
first n2 columns of ∆ can be viewed as the matrix Π2

and the inequality above implies that

PΠ1,Π2

(

y∗1
′Γ′

1AΠ2ej(n2) ≤ V̄ (A1),

∀j ∈ {1, . . . , n2} | Γ1

)

≥ 1− δ.

Since y∗1
′Γ′

1AΠ2ej(n2) ≤ V̄ (A1), ∀j ∈ {1, . . . , n2}, im-
plies y∗1

′Γ′
1AΠ2z ≤ V̄ (A1), ∀z ∈ Sn2 , we conclude that

PΠ1,Π2

(

y∗1
′Γ′

1AΠ2z
∗
2 ≤ V̄ (A1) | Γ1

)

≥ 1− δ.

We have shown that this bound holds for an arbitrary
realization of Γ1, therefore it also holds for the uncondi-
tional probability, which shows that the SSP Algorithm
is (ǫ = 0)-secure for P1 with confidence 1− δ as per (2).

If instead of using [13, Proposition 3] and (4) to obtain
(9), we use [2, Theorem 4] and (5), we obtain that

P∆

(

fΓ1
(θ∗,∆) ≤ 0 | Γ1, θ

∗
)

≥ 1− δ, (10)

with probability at least 1−β, where the confidence level
1−β refers to the extraction of Π1 = [∆1, . . . ,∆K ] that
defines θ∗ (given Γ1). The proof can now proceed ex-
actly as before, but with (9) replaced by (10), which now
involves a probability conditioned to θ∗ = (y∗, V̄ (A1)).
Thus if n1 satisfies (5), then with probability at least
1 − β, the policy y∗ with value V̄ (A1) is (ǫ = 0)-secure
for P1 with confidence 1− δ.

3.2 Pure Sampled Security Policy

Suppose that P1 restricts herself to use pure policies
in Step 2 of the SSP Algorithm 1. If we let ei(m1) de-
note the ith element of the canonical basis of Rm1 , then
Step 2 becomes:
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2: P1 computes the pure security value V̄pure(A1):

V̄pure(A1) = max
z∈Sn1

e′i∗(m1)A1z

= min
i∈{1,...,m1}

max
z∈Sn1

e′i(m1)A1z,

and the corresponding pure security policy y∗1 forA1:

y∗1 = ei∗(m1).

We call V̄pure(A1) P1’s pure sampled security value.
When multiple pure security policies y∗1 exist, P1 can
pick any of them.

A bound similar to (5) can be established for the result-
ing pure SSP Algorithm, but the number of columns n1

that P1 needs to sample can often be much smaller. Note
that the bound still holds for any policy z∗ for player P2

of the form (1), pure or mixed.

Theorem 3.3 (Pure SSP Algorithm) Suppose that
Assumption 2.1 holds and that Π1 ∈ BN×n1 and
Π2 ∈ BN×n2 have identically distributed columns. Sup-
pose that we select

n1 =

⌈

1

δ

(

ln
(

m1 ·#(Γ′
1A)

)

+ ln
1

β

)

⌉

n̄2, (11)

for β, δ ∈ (0, 1) and n̄2 ≥ n2, where #(Γ′
1A) denotes

the total number of distinct values that the entries of
Γ′
1A can take. Then, with probability 1 − β, the pure

SSP Algorithm yields a pure sampled security policy y∗

with value V̄pure(A1) that is (ǫ = 0)-secure for P1 with
confidence 1− δ. 2

In several matrix games the number of distinct values
that entries of A can take is small and therefore #(Γ′

1A)
is small. This occurs, e.g., in win-lose-tie games. For
such games, (11) provides significant computational
gains with respect to (5) because the bound in (11)
grows with the logarithm of m1, whereas the one in (5)
grows linearly with m1. Even if the matrix A can have
many distinct values, significant computational savings
are possible since #(Γ′

1A) ≤ m1N and hence, at worse,
(11) still only grows with the logarithm of m2

1N . The
price to pay for these computational savings is that the
pure security level V̄pure(A1) could be higher than the
value V̄ (A1) obtained with mixed policies.

The proof of Theorem 3.3 – reported in the technical
report [6] – is conceptually similar to the second part
of the proof of Theorem 3.1, with the main difference
being that the policy selection involves optimizing over
a finite set of cardinality #(Γ′

1A), and, hence, we can
use the bounds in [2, Theorem 3] instead of those in [2,
Theorem 4].

Remark 3.4 The bound for the pure SSP Algorithm
corresponding to (4) in Theorem 3.1 would be

n1 =

⌈

m1 ·#(Γ′
1A)

δ
− 1

⌉

n̄2,

which can be obtained by first deriving the single level of
probability version of the bounds in [2, Theorem 3], fol-
lowing similar steps as in [13, Proposition 3]. Given that
this bound is worse than (4), there is no computational
advantage for player P1 in considering pure rather than
mixed policies. Consequently, this result is not included
in Theorem 3.3. 2

4 Mismatch in the Sampling Distributions

We now investigate the effect of a mismatch between the
distribution that P1 uses to select the columns of the
policy-selection matrix Π1 used in the SSP Algorithm of
Section 3 and the distribution that P2 uses to select the
columns of the policy-selection matrix Π2 that she uses
to determine the policy z∗ in (1).

We pursue two approaches: The first one is based on a
characterization of the mismatch between distributions
using the Prohorov metric and provides bounds that are
independent of the game matrixA. The second approach
provides a novel characterization of the mismatch be-
tween the two distributions that can take the matrix A
into consideration.

Due to space limitations, we provide only some intuition
on the proof of the results in this section. The reader is
referred to [6] for details.

4.1 Prohorov Metric-Based Approach

For a given integer k, the distributions used to select the
columns of Π1 and Π2 can be used to construct two mea-
sures mk and m̃k, respectively, for the column-selection
matrices taking values in BN×k with i.i.d. columns. Us-
ing the discrete metric

d(x1, x2) =

{

1, x1 6= x2,

0, x1 = x2,
∀x1, x2 ∈ BN×k, (12)

we can regard BN×k as a metric space, for which the
Prohorov metric between mk and m̃k is simply given by
the total variation metric

π(mk, m̃k) = sup
B∈F

|mk(B)− m̃k(B)|, (13)

where F denotes the Borel sigma-algebra on BN×k. The
following theorem is based on the results for the am-
biguous chance constrained problems in [17] and should
be viewed as a generalization of the bound (5) in Theo-
rem 3.1 for the case of mismatched distributions.
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Theorem 4.1 (Matrix-independent mismatch)
Suppose that Assumption 2.1 holds, that

π
(

mn̄2 , m̃n̄2

)

≤ ρ < 1

for some n̄2 ≥ n2, and that we select

n1 =
⌈

2(m1 + 1) +
2

δ − ρ
ln

1

β
+

2(m1 + 1)

δ − ρ
ln

2

δ − ρ

⌉

n̄2

(14)

for β ∈ (0, 1), δ ∈ (ρ, 1). Then, with probability larger
than 1 − β, the SSP Algorithm generates a sampled se-
curity policy y∗ with value V̄ (A1) that is (ǫ = 0)-secure
for P1 with confidence 1− δ. 2

The first step in proving this result, consists of expressing
(6) as

V̄ (A1) = min
θ∈Θ

{

v : fΓ1
(θ,∆) ≤ 0, ∀∆ such that

d(∆,∆i) ≤ ρ for some i ∈ {1, . . . ,K}
}

,

where fΓ1
is defined in (7), d denotes the discrete metric

(12), and K is the number multiplying n̄2 on the right
hand side of (14). Next, we apply [17, Theorem 6] to
conclude that a random variable ∆ with probability dis-
tribution m̃n̄2 satisfies

m̃n̄2

(

fΓ1
(θ∗,∆) ≤ 0 | Γ1, θ

∗
)

≥ 1− δ,

with probability at least

1− (eK/(m1 + 1))m1+1 e−(δ−ρ)(K−(m1+1)) . (15)

Finally we show that (15) exceeds 1 − β via routine al-
gebraic simplifications.

In the spirit of Theorem 3.1, the bound (14) is completely
independent of the matrix game A. However, this result
has the limitation that it is applicable only for confidence
levels δ > ρ and therefore does not permit confidence
levels larger than 1− ρ.

4.2 Mismatch Factor-Based Approach

Our second approach to characterize the impact of a
mismatch between the sampling distributions relies on
generalizations of the bounds of the scenario approach
to convex optimization in [13] and [2] that were instru-
mental to the proof of Theorem 3.1. We start by pre-
senting these generalizations, which are useful beyond
the context of the problem considered here.

4.2.1 Scenario Optimization

Consider a sequence of K i.i.d. random variables ∆1,
∆2, . . . , ∆K taking values in a set D. These random
variables are used to specify a set ofK constraints in the
following convex optimization problem: 3

θ∗ = arg min
θ∈Θ

{

c′θ : f(θ,∆i) ≤ 0, ∀i ∈ {1, . . . ,K}
}

,

(16)

where c ∈ R
nθ and the constraint-defining function f :

Θ × D → R is convex with respect to θ, for each fixed
value of D, and Θ is a convex subset of Rnθ .

The results that follow provide bounds on the probabil-
ity that an additional independent random variable ∆̄,
also taking values in D but with a different distribution,
satisfies the following (somewhat relaxed) version of the
constraint that appears in (16) for the optimal θ∗:

f(θ∗, ∆̄) ≤ ǫ,

for some ǫ ≥ 0. [13, Proposition 3] and [2, Theorem 4]
provide such bounds when ∆i and ∆̄ have the same dis-
tribution and ǫ = 0. Denoting bym and m̃ the measures
associated with the distributions of ∆i and ∆̄, respec-
tively, define the mismatch factor between m and m̃ by

µf (ǫ) := inf
µ∈R

{

µ : m̃
(

f(θ, ∆̄) > ǫ
)

≤ µm
(

f(θ,∆) > 0
)

,

∀θ ∈ Θ
}

. (17)

When m = m̃, we have µf (ǫ) ≤ 1, with equality when
ǫ = 0. However, when the distributions do not match,
µf (ǫ) can be arbitrarily large. As the name indicates,
the mismatch factor µf (ǫ) can be viewed as a measure
of how much the distributions of ∆ and ∆̄ differ. Aside
from not being a metric, it differs more fundamentally
from the Prohorov metric (13) in that (i) (17) only re-
gards the discrepancy between values of the measures
for “violation” events of the type f(θ, ∆̄) > ǫ; (ii) it con-
siders a kind of multiplicative uncertainty in the prob-
abilities (instead of differences); and (iii) it allows for
the “relaxation” parameter ǫ > 0 that can bring µf (ǫ)
down if we are willing to allow f(θ, ∆̄) to grow as large
as ǫ > 0. As we shall see shortly, smaller values of µf (ǫ)
lead to smaller probabilities of violation.

The following two results generalize [13, Proposition 3]
and [2, Theorem 4], respectively, for mismatched distri-
butions and ǫ > 0.

3 In case of several possible multiple minima, the one with
the smallest Euclidean norm should be selected.
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Lemma 4.2 For every ǫ ≥ 0,

P∆̄,∆1,...,∆K

(

f
(

θ∗, ∆̄
)

≤ ǫ
)

≥ 1−
µf (ǫ)nθ

K + 1
.

2

Lemma 4.3 Given ǫ > 0, δ ∈ (0, 1), β ∈ (0, 1), and

K ≥
⌈µf (ǫ)

δ

(

(nθ − 1) +

√

2(nθ − 1) ln
1

β
+ ln

1

β

)⌉

,

we have that

P∆̄

(

f(θ∗, ∆̄) ≤ ǫ | θ∗
)

≥ 1− δ,

with probability 4 larger than 1− β. 2

4.2.2 Probabilistic Guarantees

Lemmas 4.2 and 4.3 allow us to generalize Theorem 3.1
for the case of mismatched distributions. This general-
ization involves a family of functions fΓ : Θ×BN×n̄2 →
R, with Θ := (Sm1

,R) and n̄2 an integer larger than n2,
parameterized by the matrix Γ ∈ BM×m1 and defined by

fΓ(θ,∆) = max
j∈{1,...,n̄2}

y′1Γ
′A∆ej(n̄2)− v.

We shall use these functions to compute the mis-
match factor between the measures mk and m̃k for
column-selection matrices taking values in BN×k with
i.i.d. columns, constructed using the distributions used
to select the columns of Π1 and Π2, respectively.

Theorem 4.4 (Matrix-dependent mismatch)
Suppose that Assumption 2.1 holds, and that

m̃n̄2

(

f(θ, ∆̄) > ǫ
)

≤ µmn̄2

(

f(θ,∆) > 0
)

, (18)

∀θ ∈ Θ, ∀Γ ∈ BM×m1 , for some µ ∈ (0,∞), n̄2 ≥ n2

and ǫ ≥ 0. The SSP Algorithm is ǫ-secure for P1 with
confidence 1− δ, δ ∈ (0, 1) as long as

n1 =
⌈µ

δ
(m1 + 1)− 1

⌉

n̄2.

Additionally, suppose that we increase n1 to satisfy

n1 =
⌈µ

δ

(

m1 +

√

2m1 ln
1

β
+ ln

1

β

)⌉

n̄2,

for some β ∈ (0, 1). Then, with probability larger than
1 − β, the SSP Algorithm generates a sampled security
policy y∗ with value V̄ (A1) that is ǫ-secure for P1 with
confidence 1− δ. 2

4 The confidence level 1 − β refers to the extraction of
∆1, . . .∆K that defines θ∗.

The proof of this result is conceptually similar to the
proof of Theorem 3.1, with themain difference being that
we use Lemmas 4.2 and 4.3 instead of [13, Proposition
3] and [2, Theorem 4], respectively.

Theorem 4.4 shows that, even when there is a mis-
match in the distributions, it is still possible to achieve
high-confidence security policies. However, the number
of samples required by the SSP algorithm essentially
needs to be multiplied by µ. Alternatively, if one uses
the number of samples dictated by Theorem 3.1 and
there is mismatch in the distributions, then one obtains
security with confidence 1− δ/µ (instead of 1− δ) since
one can go from the formulas in Theorem 3.1 to the
ones in Theorem 4.4 by simply replacing 1/δ by µ/δ.

Remark 4.5 (µ < 1) For values of ǫ > 0 and matched
(or closely matched distributions), the mismatch factors
may actually be smaller than 1. Theorem 4.4 is still ap-
plicable and states that if one is willing to accept some
ǫ > 0, onemay get 1−δ confidence with a smaller number
of samples than those required by Theorem 3.1. 2

Remark 4.6 (Matrix-independent results) If we
choose µ to satisfy

m̃n̄2(B) ≤ µmn̄2(B), ∀B ∈ F ,

where F denotes the Borel sigma-algebra on BN×n̄2 ,
then (18) holds with ǫ = 0 for every matrix game and
we obtain a game independent result. The price is, of
course, that such µ does not explore the structure of the
particular game and may therefore be much larger than
what is needed. In fact, we shall see in the next section
that the structure of the matrixAmay dictate that some
mismatch should not lead to a degradation in the confi-
dence levels. This is the case when A exhibits some form
of policy domination. 2

4.2.3 Matrix games with dominated policies

Consider a situation when P1 knows of some particu-
larly good policies that P2 may apply to play the game.
For example, suppose that the entries in some column
cbetter-for-P2

ofA are all element-wise larger than those in
some other column cworse-for-P2

. In this case, it turns out
that P1 can increase the probability of sampling the col-
umn cbetter-for-P2

at the expense of decreasing the prob-
ability of selecting cworse-for-P2

and this mismatch does
not require a larger bound on the number of columns to
sample. This observation is formalized in the remaining
of this section.

We begin with the following notion of dominance.

Definition 1 (ǫ-Dominance) Given anM×N matrix
A, the vector d∗ ∈ BN×1 is said to be ǫ-dominated by the
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vector d ∈ BN×1 for some ǫ ≥ 0 if

ei(M)′Ad∗ ≤ ei(M)′Ad+ ǫ, ∀i ∈ {1, . . . ,M},

where ei(M) is the ith canonical basis element of RM .

With ǫ = 0, the above definition becomes identical
to that of domination between pure policies in matrix
games (cf. [3]). Next, we introduce the notion of two
sampling distributions being perturbed.

Definition 2 (Perturbed sampling) Given two dis-
tinct vectors d, d∗ ∈ BN×1 and two probability measures
m, m̃ on BN×1, we say that m is a perturbation of m̃
with respect to the pair (d, d∗) if

(1) m differs from m̃ only over {d, d∗} ⊆ BN×1, i.e.,

m̃(ej(N)) = m(ej(N)),

for all j such that ej(N) 6∈ {d∗, d}, where ej(N)
denotes the jth element of the canonical basis ofRN ;

(2) the probability of extracting d∗ according to m is
smaller than according to m̃, i.e.,

m(d∗) ≤ m̃(d∗).

We now present the main result of this subsection.

Theorem 4.7 (Domination) Given the game matrix
A, suppose that for some ǫ ≥ 0, there exist vectors d∗, d ∈
BN×1 such that d∗ is ǫ-dominated by d. Suppose that As-
sumption 2.1 holds and that the columns of the matrices
Π1 and Π2 are sampled according to distributions m and
m̃, respectively. If m is a perturbation of m̃ with respect
to (d, d∗), then Theorem 4.4 holds with µ = 1.

This result shows that even when P1 extracts with low
probability (possibly equal to zero) the column d∗, the
bounds of Section 3 hold.

To establish Theorem 4.7, we need to show that

P∆̄

(

fΓ(θ, ∆̄) > ǫ
)

≤ P∆

(

fΓ(θ,∆) > 0
)

, (19)

for any θ ∈ Θ, Γ ∈ BM×m1 , since from this condition
we have that µ = 1 satisfies (18). We achieve this by
individually considering the following two cases:

y′1Γ
′Ad∗ − v > ǫ, or y′1Γ

′Ad∗ − v ≤ ǫ.

For each one of these cases, we prove (19) by using the
definition of ǫ-dominance and perturbed sampling, along
with the independence of column extraction.

5 A-posteriori assessment of a given policy

Suppose now that P1 obtained a policy y∗ using either a
randomized or a deterministic algorithm. In this section,
we are interested in computing a high-confidence secu-
rity level value V̄ (y∗) for this policy, when y∗ is played
against P2’s policy z∗ in (1). The sampled security-value
(SSV) Algorithm 2 addresses this question.

Algorithm 2 [SSV Algorithm]

1: P1 randomly selects k1 columns of A, which corre-
sponds to the selection of a random matrix Π̄1 ∈
BN×k1 .

2: P1 computes

V̄ (y∗) = max
j∈{1,...,k1}

y∗′AΠ̄1ej(k1), (20)

where ej(k1) denotes the jth element of the canoni-
cal basis ofRk1 . We call V̄ (y∗) P1’s a-posteriori sam-
pled security value.

We use the qualifier “a-posteriori” for the sampled se-
curity value V̄ (y∗) to emphasize that this value is com-
puted after a particular security policy y∗ has been ob-
tained. We say that the SSV algorithm is ǫ-secure for
player P1’s policy y∗ with confidence 1− δ if

PΠ̄1,Π2

(

y∗′Az∗ ≤ V̄ (y∗) + ǫ | y∗
)

≥ 1− δ.

This condition states that the probability that the out-
come of the game will violate P1’s a-posteriori sampled
security value V̄ (y∗) by more than ǫ is smaller than δ.
As stated, this definition requires the bound to hold re-
gardless of the algorithms used to generate y∗ and z∗. In
particular, we leave open the possibility that both poli-
cies could have been computed using the SSP algorithm,
perhaps with confidence levels different than δ. In fact,
one could imagine P1 computing y∗ using the SSP algo-
rithm for a confidence level δSSP and then studying the
security of such policy for tighter confidence levels δ us-
ing the SSV algorithm. Thus, the SSV algorithm com-
bined with the SSP algorithm can be viewed as a heuris-
tic for designing high-confidence security policies.

Also for the SSV, we can define a stronger notion of
security that guarantees the inherent security of the a-
posteriori sampled security value V̄ (y∗), when P1 plays
y∗ repeatedly against a sequence of policies z∗ for P2,
each obtained by a distinct random exploration of her
policy space. We say that the a-posteriori sampled secu-
rity value V̄ (y∗) is ǫ-secure for player P1’s policy y

∗ with
confidence 1− δ if

PΠ2

(

y∗′Az∗ ≤ V̄ (y∗) + ǫ | y∗, V̄ (y∗)
)

.
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As for the SSP Algorithm 1, we assume that the column
extraction matrices, Π̄1 used by player P1 in the SSV
Algorithm 2 and Π2 used by player P2 in her randomized
policy exploration, are independent.

Assumption 5.1 (Independence) The random ma-
trix Π̄1 in the SSV Algorithm 2 and matrix Π2 involved
in player P2 randomized exploration are statistically in-
dependent and each of them has independent and identi-
cally distributed columns. 2

We now provide a bound on the number of samples k1
used in the SSV Algorithm to guarantee ǫ-security. Akin
to Section 3, we restrict our attention to the case when
player P1 uses the same distribution as player P2 to ex-
tract columns of A. Results along the same lines as those
shown in Section 4 for the SSP Algorithm could be ob-
tain for the SSV Algorithm in the case of mismatched
distributions, but we omit them because they are fun-
damentally similar.

Theorem 5.1 (SSV Algorithm) Suppose that As-
sumption 5.1 holds and that Π̄1 ∈ BN×k1 and Π2 ∈
BN×n2 have identically distributed columns. The SSV
algorithm is (ǫ = 0)-secure for player P1’s policy y∗ with
confidence 1− δ, δ ∈ (0, 1) as long as

k1 =
⌈1

δ
− 1

⌉

n̄2, (21)

with n̄2 ≥ n2. Additionally, suppose that we increase k1
to satisfy

k1 =

⌈

1

δ
ln

1

β

⌉

n̄2, (22)

for some β ∈ (0, 1). Then, with probability 1 − β, the
SSV Algorithm generates an a-posteriori sampled secu-
rity value V̄ (y∗) that is (ǫ = 0)-secure for player P1’s
policy y∗ with confidence 1− δ. 2

Proof of Theorem 5.1: Defining K :=
⌈

1
δ
− 1

⌉

and the

function f̄ : SM × BN×n̄2 → R by

f̄(y,∆) = max
j∈{1,...,n̄2}

y′A∆ej(n̄2),

we can re-write (20) as

V̄ (y∗) = max
i∈{1,...,K}

f̄(y∗,∆i),

where the matrices ∆1,∆2, . . . ,∆K ∈ BN×n̄2 are ob-
tained by partitioning the Kn̄2 columns of Π̄1 ∈
BN×Kn̄2 into K i.i.d. matrices.

For any given y∗ (independent of the ∆i’s), we conclude
from [13, Proposition 4] that the (conditional) probabil-
ity that another matrix ∆, sampled independently from
the same distribution as the ∆i, satisfies the constraint

f̄(y∗,∆) ≤ V̄ (y∗) := max
i∈{1,...,K}

f̄(y∗,∆i),

can be lower-bounded as follows:

PΠ̄1,∆

(

f̄(y∗,∆) ≤ V̄ (y∗) | y∗
)

≥
K

K + 1
≥ 1− δ, (23)

where the second inequality is a consequence of (21).
From the definition of f̄ , we conclude from (23) that

PΠ̄1,∆(y
∗′A∆ej(n̄2) ≤ V̄ (y∗), ∀j ∈ {1, . . . , n̄2} | y

∗) ≥ 1− δ,

and, since n2 ≤ n̄2, we also have that

PΠ̄1,∆(y
∗′A∆ej(n2) ≤ V̄ (y∗), ∀j ∈ {1, . . . , n2} | y

∗) ≥ 1− δ.

Under Assumption 5.1, when the columns of Π̄1 and Π2

are identically distributed, the matrix consisting of the
first n2 columns of ∆ can be viewed as the matrix Π2

and the inequality above implies that

PΠ̄1,Π2
(y∗′AΠ2ej(n2) ≤ V̄ (y∗), ∀j ∈ {1, . . . , n2} | y

∗) ≥ 1− δ.

Since y∗′AΠ2ej(n2) ≤ V̄ (y∗), ∀j ∈ {1, . . . , n2}, implies
y∗′AΠ2z ≤ V̄ (y∗), ∀z ∈ Sn2

, we conclude that

PΠ2,Π̄1

(

y∗′AΠ2z
∗
2 ≤ V̄ (y∗) | y∗

)

≥ 1− δ,

which shows that SSV Algorithm is (ǫ = 0)-secure with
confidence 1− δ.

If, instead of using [13, Proposition 4] and (21) to obtain
(23), we use [14, Theorem 1] and (22), we obtain

P∆

(

f̄(y∗,∆) ≤ V̄ (y∗) | y∗, V̄ (y∗)
)

≥ 1− δ, (24)

with probability larger than 1−β, where the confidence
level 1−β refers to the extraction of Π̄1 = [∆1, . . . ,∆K ]
that defines V̄ (y∗). The proof can now proceed exactly
as before, but with (23) replaced by (24), which now in-
volves a probability conditioned to y∗, and V̄ (y∗). This
shows that if k1 satisfies (22), then with probability
larger than 1 − β, the security value V̄ (y∗) is (ǫ = 0)-
secure with confidence 1− δ.

6 Example: Hide-and-seek matrix game

In this section, we apply the SSP and SSV Algorithms
to a classic search problem: Consider a zero-sum game
where P1 hides a non-moving object (treasure) in one of
N points {p1, . . . , pN} ⊂ R

2 on the plane and P2 wants
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to find the treasure with minimum cost, by traveling
from point to point until she finds it.

The game is played over the set of mixed policies:

• P1 chooses a probability distribution z ∈ SN for the
treasure over the N points, and

• P2 chooses a probability distribution y ∈ SM over the
set R := {rj : j = 1, . . . ,M} of M := N ! routes that
start at P1’s initial position p0 ∈ R

2 and go through
all possible permutations of the points.

When P1 chooses to hide the treasure at point pi and
P2 selects route rj , the outcome of the game is equal to
the length of route rj from P1’s initial position p0 to the
point pi where the treasure lies. Namely,

Aij = −

k∗

ij
∑

k=1

‖rj(k)− rj(k − 1)‖, (25)

where rj(k) ∈ R
2, k ∈ {1, . . . , N} denotes the kth point

in the route rj with rj(0) = p0, and the summation
ends at the index k∗ij for which rj(k

∗
ij) = pi is the point

where the treasure is hidden. The minus sign in (25) is
needed to maintain consistency with the formulation in
the first part of the paper, where P1 is the minimizer.
Indeed, P1 hides the treasure to maximize the distance
and therefore to minimize the entries of A.

For a large N , the exact computation of the optimal
mixed strategies is intractable because the size of the
matrix A is N ×N !. However, the results in this paper
lead to a computational complexity that is independent
of the size of the game, which means that we can provide
probabilistic guarantees for games with an arbitrarily
large number of points.

In this game, only the player P2 that chooses paths has
a large number of options (M = N !) so we can assume
that both players consider all possibleN locations where
P1 can hide the treasure (all rows of A), but randomly
select only a small number of paths (columns of A) to
construct their submatrices. However, the player P1 that
hides the treasure should respect the bounds provided
by Theorems 3.1 and 5.1 to avoid unpleasant surprises.

In our numerical experiments, we considered N = 10
points distributed uniformly randomly in a square re-
gion. To illustrate the use of the SSP and the SSV Algo-
rithms, we fixed m1 = N , β = 10−5, and n̄2 = 10 (Fig-
ure 1) or n̄2 = 1000 (Figure 2). To achieve a confidence
level of δ = .01, two approaches are possible:

SSP only: Execute the SSP Algorithm 1 with n1 sat-
isfying (5) to obtain a sampled security value and a
sampled security policy with confidence 1− δ = 99%.

SSP+SSV: Execute the SSP Algorithm 1 with a value
for n1 smaller than the one indicated by (5) to obtain
a sampled security policy, and then run the SSV Al-
gorithm 2 with a value of k1 satisfying (22) to obtain
an a-posteriori sampled security value with confidence
1− δ = 99%.

While the SSP+SSV option requires solving a smaller
subgame in the SSP algorithm, and is therefore compu-
tationally more attractive, it typically results in a worst
sampled security policy and therefore the correspond-
ing security value is typically worst. However, one can
see that the curves corresponding to the SSP+SSV op-
tion are relatively flat, which indicates that significant
computational savings are possible without a significant
degradation in the sampled security level. Note that the
security levels computed using either of the approaches
above are random variables since they depend on the
randomly selected columns of the matrix A. The plots
in Figures 1 and 2 show Monte Carlo estimates of the
mean and standard deviation of these random variables.
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Fig. 1. Numerically determined values for the 99% confidence
sampled security value (δ = .1). The solid line (mean) and
dashed lines (plus/minus one standard deviation) were ob-
tained using the SSP+SSV approach, using different values
of n1 in the SSPAlgorithm (with n1 in the x-axis) and a value
for k1 in the SSV Algorithm satisfying (22). The star ’*’ was
obtained using the SSP-only approach, using the value for n1

satisfying (5). The remaining parameters used are as follows:
the number of points is N = 10, the side length of the square
region is 1 unit, m1 = n̄2 = 10, β = 10−5, and the columns
were drawn uniformly randomly. Each mean and standard
deviation was estimated using 300 Monte Carlo samples.

7 Conclusions and Future Directions

We addressed the solution of large zero-sum matrix
games using randomized techniques. We provided a
procedure based on randomized sampling by which
a player can construct policies that are security with
high-probability against an adversary engaged in a ran-
domized exploration of the games characterized by large
decision trees. We proposed a new probabilistic notion
of security policy and level and derive bounds on the
sample sizes that guarantees the discovery of a security
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Fig. 2. Plot similar to that in Figure 1, with the exception
that we took n̄2 = 1000. Each mean and standard deviation
was estimated using 300 Monte Carlo samples.

policy with high probability. The bounds provided con-
sider both the case where the two players sample policies
using the same and different distributions. The applica-
bility of the results is illustrated with a combinatorial
hide-and-seek game.

This work suggests a number of future directions of re-
search. One promising direction is to explore incremen-
tal opmization techniques to reduce the bound on the
size of the submatrices and/or the number of entries of
the submatrices that are needed to compute the sampled
security policies. Another direction for future research
regards the choice of the distributions used to sample
policies to minimize the sample-size bounds and maxi-
mize the probability of finding adequate policies. In the
context of the example in Section 6, we are currently ex-
ploring closed-loop versions of the hide-and-seek game
that involve the searcher taking measurements regard-
ing the location of the treasure as she moves from point
to point (cf. [8]).
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