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Abstract. Control systems are usually modeled by differential equations describing how physical phenomena

can be influenced by certain control parameters or inputs. Although these models are very powerful when

dealing with physical phenomena, they are less suitable to describe software and hardware interfacing the
physical world. For this reason there is a growing interest in describing control systems through symbolic

models that are abstract descriptions of the continuous dynamics, where each “symbol” corresponds to an

“aggregate” of states in the continuous model. Since these symbolic models are of the same nature of the
models used in computer science to describe software and hardware, they provide a unified language to study

problems of control in which software and hardware interact with the physical world. Furthermore the use of

symbolic models enables one to leverage techniques from supervisory control and algorithms from game theory
for controller synthesis purposes. In this paper we show that every incrementally globally asymptotically stable

nonlinear control system is approximately equivalent (bisimilar) to a symbolic model. The approximation
error is a design parameter in the construction of the symbolic model and can be rendered as small as desired.

Furthermore if the state space of the control system is bounded the obtained symbolic model is finite. For

digital control systems, and under the stronger assumption of incremental input–to–state stability, symbolic
models can be constructed through a suitable quantization of the inputs.

1. Introduction

The idea of using models at different levels of abstraction has been successfully used in the formal methods
community with the purpose of mitigating the complexity of software verification. A central notion when
dealing with complexity reduction, is the one of bisimulation equivalence, introduced by Milner [Mil89] and
Park [Par81] in the 80s’. The key idea is to find and compute an equivalence relation on the state space of the
system, that respects the system dynamics. This equivalence relation induces a new system on the quotient
space that shares most properties of interest with the original model. This approach leads to an alternative
methodology for the analysis and control of large–scale control systems. In fact from the analysis point of
view, symbolic models provide a unified framework for describing continuous systems as well as, hardware
and software interacting with the physical environment. Furthermore, the use of symbolic models allows
one to leverage the rich literature on supervisory control [RW87] and algorithmic approaches to game theory
[AVW03], for controller design.
After the pioneering work of Alur and Dill [AD94] that showed existence of symbolic models for timed au-
tomata, researchers tried to identify more general classes of continuous systems admitting finite bisimulations.
The existing results can be roughly classified into four main different lines of research:

(i) Simulation/bisimulation: symbolic models have been studied in [TP06, Tab07b, Gir07] for discrete–
time control systems, in [Tab07a] for continuous–time control systems and in [LPS00] for o-minimal
hybrid systems among others. Reduction of continuous control systems to continuous control systems
with lower dimensional state space has been addressed in [vdS04, Gra07, TP04, PvdSB06];

(ii) Quantized control systems: finite abstractions have been studied in [BMP02, BMP06] for certain
classes of control systems with quantized inputs;
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project VAL-AMS..
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(iii) Qualitative reasoning: symbolic models were constructed using methods of qualitative reasoning
in [RK03, Kui94];

(iv) Stochastic automata: abstractions of continuous–time control systems by means of stochastic au-
tomata have been studied in [LN01, Sch03].

We defer to the last section of the paper a comparison between the results presented in this paper and the
above lines of research. In this paper we follow the line of research based on simulation/bisimulation by
making use of the recently introduced notion of approximate bisimulation [GP07], that captures equivalence of
systems in an approximate setting. By relaxing the usual notion of bisimulation to approximate bisimulation,
a larger class of control systems can be expected to admit symbolic models. In fact the work in [Tab07a] shows
that for every asymptotically stabilizable control system it is possible to construct a symbolic model, which
is based on an approximate notion of simulation (one–sided version of bisimulation). However, if a controller
fails to exist for the symbolic model, nothing can be concluded regarding the existence of a controller for the
original model. This drawback is a direct consequence of the one–sided notion used in [Tab07a]. For this
reason, an extension of the results in [Tab07a] from simulation to bisimulation is needed. The aim of this
paper is precisely to provide such extension. The key idea in the results that we propose is to replace the
assumption of asymptotic stabilizability of [Tab07a] with the stronger notion of asymptotic stability. We show
that every incrementally globally asymptotically stable nonlinear control system admits a symbolic model that is
an approximate bisimulation, with a precision that is a–priori defined, as a design parameter. Furthermore, if
the state space of the control system is bounded the symbolic model is finite. Moreover, for incrementally input–
to–state stable digital control systems, i.e. systems where control signals are piecewise–constant, a symbolic
model can be obtained by quantizing the space of inputs. As an illustrative example, we apply the proposed
techniques to a control design problem for a pendulum. A preliminary version of these results appeared in
[PGT07].

2. Control systems and stability notions

2.1. Notations. The symbols N, Z, R, R+ and R+
0 denote the natural, integers, real, positive and nonnegative

real numbers, respectively. Given a vector x ∈ Rn we denote by x′ the transpose of x and by xi the i–th
element of x; furthermore ‖x‖ denotes the infinity norm of x; we recall that ‖x‖ := max{|x1|, |x2|, ..., |xn|},
where |xi| is the absolute value of xi. The symbol Bε(x) denotes the closed ball centered at x ∈ Rn with
radius ε ∈ R+

0 , i.e. Bε(x) = {y ∈ Rn : ‖x− y‖ ≤ ε}. For any A ⊆ Rn and µ ∈ R+ define [A]µ := {a ∈ A |
ai = kiµ, ki ∈ Z, i = 1, ..., n}. The set [A]µ will be used in the subsequent developments as an approximation
of the set A with precision µ. By geometrical considerations on the infinity norm, for any µ ∈ R+ and λ ≥ µ/2
the collection of sets {Bλ(q)}q∈[Rn]µ is a covering of Rn, i.e. Rn ⊆

⋃
q∈[Rn]µ

Bλ(q); conversely for any λ < µ/2,
Rn *

⋃
q∈[Rn]µ

Bλ(q).
We now recall from [Kha96, Son98] some notions that will be employed in Sections 2.2 and 2.3 to define
trajectories and some stability notions for control systems. A function f : [a, b]→ Rn is said to be absolutely
continuous on [a, b] if for any ε ∈ R+ there exists δ ∈ R+ so that for every k ∈ N and for every sequence of
points a ≤ a1 < a1 < b1 < a2 < b2 < ... < ak < bk ≤ b, if

∑m
i=1(bi − ai) < δ then

∑m
i=1 |f(bi)− f(ai)| < ε. A

function f :]a, b[→ Rn is said to be locally absolutely continuous if the restriction of f to any compact subset
of ]a, b[ is absolutely continuous. Given a measurable function f : R+

0 → Rn, the (essential) supremum of f
is denoted by ‖f‖∞; we recall that ‖f‖∞ := (ess)sup{‖f(t)‖, t ≥ 0}; f is essentially bounded if ‖f‖∞ < ∞.
For a given time τ ∈ R+, define fτ so that fτ (t) = f(t), for any t ∈ [0, τ), and f(t) = 0 elsewhere; f is said
to be locally essentially bounded if for any τ ∈ R+, fτ is essentially bounded. A function f : Rn → R is said
to be radially unbounded if f(x) → ∞ as ‖x‖ → ∞. A continuous function γ : R+

0 → R+
0 , is said to belong

to class K if it is strictly increasing and γ(0) = 0; γ is said to belong to class K∞ if γ ∈ K and γ(r) → ∞
as r → ∞. A continuous function β : R+

0 × R+
0 → R+

0 is said to belong to class KL if for each fixed s, the
map β(r, s) belongs to class K∞ with respect to r and, for each fixed r, the map β(r, s) is decreasing with
respect to s and β(r, s) → 0 as s→∞. The following notions will be used in Sections 3, 4 and 5 to define
the concept of approximate bisimulation and the symbolic models that we propose in this paper. The identity
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map on a set A is denoted by 1A. Given two sets A and B, if A is a subset of B we denote by ıA : A ↪→ B
or simply by ı the natural inclusion map taking any a ∈ A to ı(a) = a ∈ B. Given a function f : A → B the
symbol f(A) denotes the image of A through f , i.e. f(A) := {b ∈ B : ∃a ∈ A s.t. b = f(a)}. We identify a
relation R ⊆ A× B with the map R : A→ 2B defined by b ∈ R(a) if and only if (a, b) ∈ R. Given a relation
R ⊆ A×B, R−1 denotes the inverse relation of R, i.e. R−1 := {(b, a) ∈ B ×A : (a, b) ∈ R}.

2.2. Control Systems. The class of control systems that we consider in this paper is formalized in the
following definition.

Definition 2.1. A control system is a quadruple Σ = (Rn, U,U , f), where:

• Rn is the state space;
• U ⊆ Rm is the input space;
• U is a subset of the set of all locally essentially bounded functions of time from intervals of the form

]a, b[⊆ R to U with a < 0 and b > 0;
• f : Rn×U → Rn is a continuous map satisfying the following Lipschitz assumption: for every compact

set K ⊂ Rn, there exists a constant κ > 0 such that ‖f(x, u) − f(y, u)‖ ≤ κ‖x − y‖, for all x, y ∈ K
and all u ∈ U .

A locally absolutely continuous curve x :]a, b[→ Rn is said to be a trajectory of Σ if there exists u ∈ U satisfying
ẋ(t) = f(x(t),u(t)), for almost all t ∈ ]a, b[. Although we have defined trajectories over open domains, we
shall refer to trajectories x :[0, τ ] → Rn defined on closed domains [0, τ ], τ ∈ R+ with the understanding of
the existence of a trajectory z :]a, b[→ Rn such that x = z|[0,τ ]. We will also write x(t, x,u) to denote the
point reached at time t ∈]a, b[ under the input u from initial condition x; this point is uniquely determined,
since the assumptions on f ensure existence and uniqueness of trajectories [Son98].
A control system Σ is said to be forward complete if every trajectory is defined on an interval of the form ]a,∞[.
Sufficient and necessary conditions for a system to be forward complete can be found in [AS99]. Simpler, but
only sufficient, conditions for forward completeness are also available in the literature. These include linear
growth or compact support of the vector field (see e.g. [LM67]).

2.3. Stability notions. The results presented in this paper will assume certain stability assumptions that
we briefly recall in this section.

Definition 2.2. [Ang02] A control system Σ is incrementally globally asymptotically stable ( δ–GAS) if it is
forward complete and there exist a KL function β such that for any t ∈ R+

0 , any x, y ∈ Rn and any u ∈ U the
following condition is satisfied:

(2.1) ‖x(t, x,u)− x(t, y,u)‖ ≤ β(‖x− y‖ , t).

Definition above can be thought of as an incremental version of the classical notion of global asymptotic
stability (GAS) [Kha96].

Definition 2.3. [Ang02] A control system Σ is incrementally input–to–state stable (δ–ISS) if it is forward
complete and there exist a KL function β and a K∞ function γ such that for any t ∈ R+

0 , any x, y ∈ Rn and
any u,v ∈ U the following condition is satisfied:

‖x(t, x,u)− x(t, y,v)‖ ≤ β(‖x− y‖ , t) + γ(‖u− v‖∞).
(2.2)

It is readily seen, by observing (2.1) and (2.2), that δ–ISS implies δ–GAS, while the converse is not true in
general (see [Ang02] for some examples).
In general, inequalities (2.1) and (2.2) are difficult to check directly. Fortunately δ–GAS and δ–ISS can be
characterized by dissipation inequalities.



4 GIORDANO POLA, ANTOINE GIRARD AND PAULO TABUADA

Definition 2.4. Consider a control system Σ and a smooth function V : Rn × Rn → R+
0 . Function V is called

a δ–GAS Lyapunov function for Σ, if there exist K∞ functions α1, α2 and ρ such that:

(i) for any x, y ∈ Rn
α1(‖x− y‖) ≤ V (x, y) ≤ α2(‖x− y‖);

(ii) for any x, y ∈ Rn and any u ∈ U
∂V

∂x
f(x, u) +

∂V

∂y
f(y, u) < −ρ(‖x− y‖).

Function V is called a δ–ISS Lyapunov function for Σ, if there exist K∞ functions α1, α2, ρ and σ satisfying
conditions (i) and:

(iii) for any x, y ∈ Rn and any u, v ∈ U
∂V

∂x
f(x, u) +

∂V

∂y
f(y, v) < −ρ(‖x− y‖) + σ(‖u− v‖).

The following result completely characterizes δ–GAS and δ–ISS in terms of existence of Lyapunov functions.

Theorem 2.5. [Ang02] Consider a control system Σ = (Rn, U,U , f). Then:

• If U is compact then Σ is δ–GAS if and only if it admits a δ–GAS Lyapunov function;
• If U is closed, convex, contains the origin and f(0, 0) = 0, then Σ is δ–ISS if it admits a δ–ISS

Lyapunov function. Moreover if U is compact, existence of a δ–ISS Lyapunov function is equivalent
to δ–ISS.

3. Approximate bisimulation

In this section we introduce a notion of approximate equivalence upon which all the results in this paper rely.
We start by introducing the class of transition systems that will be used in this paper as abstract models for
control systems.

Definition 3.1. A transition system is a quintuple T = (Q,L, - , O,H), consisting of:

• A set of states Q;
• A set of labels L;
• A transition relation - ⊆ Q× L×Q;
• An output set O;
• An output function H : Q→ O.

A transition system T is said to be:

• metric, if the output set O is equipped with a metric d : O ×O → R+
0 ;

• countable, if Q and L are countable sets;
• finite, if Q and L are finite sets.

We will follow standard practice and denote an element (q, l, p) ∈ - by q
l- p. Transition systems

capture dynamics through the transition relation. For any states q, p ∈ Q, q
l- p simply means that it is

possible to evolve or jump from state q to state p under the action labeled by l. We will use transition systems
as an abstract representation of control systems. There are several different ways in which control systems can
be transformed into transition systems. We now describe one of these, which has the property of capturing
all the information contained in a control system Σ.
Given a control system Σ = (Rn, U,U , f) define the transition system:

(3.1) T (Σ) := (Q,L, - , O,H),
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where:

• Q = Rn;
• L = U ;
• q u- p, if x(τ, q,u) = p for some τ ∈ R+;
• O = Rn;
• H = 1Rn .

Transition system T (Σ) is metric when we regard the setO = Rn as being equipped with the metric d(p, q) = ‖p− q‖.
Note that the state space of T (Σ) is infinite. The aim of this paper is to study existence of countable tran-
sition systems that are approximately equivalent to T (Σ). The notion of equivalence that we consider is the
one of bisimulation equivalence [Mil89, Par81]. Bisimulation relations are standard mechanisms to relate the
properties of transition systems. Intuitively, a bisimulation relation between a pair of transition systems T1

and T2 is a relation between the corresponding state sets explaining how a state trajectory r1 of T1 can be
transformed into a state trajectory r2 of T2 and vice versa. While typical bisimulation relations require that r1
and r2 are observationally indistinguishable, that is H1(r1) = H2(r2), we shall relax this by requiring H1(r1)
to simply be close to H2(r2) where closeness is measured with respect to the metric on the output set. The
following notion has been introduced in [GP07] and in a slightly different formulation in [Tab07a].

Definition 3.2. Let T1 = (Q1, L1,
1
- , O,H1) and T2 = (Q2, L2,

2
- , O,H2) be metric transition sys-

tems with the same output set and metric d, and let ε ∈ R+
0 be a given precision. A relation R ⊆ Q1 ×Q2 is

said to be an ε–approximate bisimulation relation between T1 and T2, if for any (q1, q2) ∈ R:

(i) d(H1(q1), H2(q2)) ≤ ε;
(ii) q1

l1

1
- p1 implies existence of q2

l2

2
- p2 such that (p1, p2) ∈ R.

(iii) q2
l2

2
- p2 implies existence of q1

l1

1
- p1 such that (p1, p2) ∈ R.

Moreover T1 is ε–bisimilar to T2 if there exists an ε–approximate bisimulation relation R between T1 and T2

such that R(Q1) = Q2 and R−1(Q2) = Q1.

4. Approximate bisimilar symbolic models

In the following we will work with a sub–transition system of T (Σ) obtained by selecting those transitions from
T (Σ) that describe trajectories of duration τ for some chosen τ ∈ R+. This can be seen as a time discretization
or sampling process. Given a control system Σ and a parameter τ ∈ R+ define the transition system:

Tτ (Σ) := (Q1, L1,
1
- , O1, H1),

where:

• Q1 = Rn;
• L1 = {l1 ∈ U | x(τ, x, l1) is defined for all x ∈ Rn};
• q l1

1
- p, if x(τ, q, l1) = p;

• O1 = Rn;
• H1 = 1Rn .

Transition system Tτ (Σ) is metric when we regardO1 = Rn as being equipped with the metric d(p, q) = ‖p− q‖.
Note that the set of labels L1 is composed by (only) those control signals of U for which a trajectory of Σ exists
for any time t ∈ [0, τ ] and for any initial condition x ∈ Rn. Any measurable control input can be included in
L1 when the control system is forward complete.
In the following we show existence of a countable transition system that is approximately bisimilar to Tτ (Σ),
provided that Σ satisfies some stability properties.
By simple considerations on the infinity norm, for any given precision η ∈ R+ we can approximate the state
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space Q1 = Rn of Tτ (Σ) by means of the countable set Q2 := [Rn]η so that for any x ∈ Rn there exists q ∈ Q2

such that ‖x− q‖ ≤ η/2.
The approximation of the set of labels L1 of Tτ (Σ) is more involved. We approximate L1 by means of the set:

(4.1) L2 :=
⋃
q∈Q2

L2(q),

where L2(q) captures the set of labels that can be applied at the state q ∈ Q2 of the symbolic model. The
definition of L2(q) is based on the notion of reachable sets. Given any state q ∈ Q1 consider the set:

(4.2) R(τ, q) =
{
p ∈ Q1 : q

l1

1
- p, l1 ∈ L1

}
,

of reachable states of Tτ (Σ) from q. Notice that R(τ, q) is well defined because of the definition of the set
of labels L1. We approximate R(τ, q) by means of a countable set, as follows. Given any precision µ ∈ R+,
consider the set:

Pµ(τ, q) := {y ∈ [Rn]µ : ∃z ∈ R(τ, q) s.t. ‖y − z‖ ≤ µ/2},
and define the function ψτ,qµ : Pµ(τ, q) → L1, that associates to any y ∈ Pµ(τ, q) a label l1 = ψτ,qµ (y) ∈ L1 so
that ‖y−x(τ, q, l1)‖ ≤ µ/2. Notice that the function ψτ,qµ is not unique. The set L2(q) appearing in (4.1) can
now be defined by L2(q) := ψτ,qµ (Pµ(τ, q)). Notice that since L2(q) is the image through ψτ,qµ of a countable
set, it is countable. Therefore L2 as defined in (4.1) is countable, as well. Furthermore the set L2 approximates
the set L1 in the sense that given any q ∈ Q2, for any l1 ∈ L1 there exists l2 ∈ L2(q) so that:

(4.3) ‖x(τ, q, l1)− x(τ, q, l2)‖ ≤ µ.

We now have all the ingredients to define a symbolic model that will be used to approximate a control system.
Given a control system Σ = (Rn, U,U , f), any τ ∈ R+, η ∈ R+ and µ ∈ R+ define the following transition
system:

(4.4) Tτ,η,µ(Σ) := (Q2, L2,
2
- , O2, H2),

where:

• Q2 = [Rn]η;
• L2 =

⋃
q∈Q2

L2(q);

• q l

2
- p, if l ∈ L2(q) and ‖p− x(τ, q, l)‖ ≤ η/2;

• O2 = Rn;
• H2 = ı : Q2 ↪→ O2.

We think of Tτ,η,µ(Σ) as a metric transition system whereO2 = Rn is equipped with the metric d(p, q) = ‖p− q‖.
Parameters τ ∈ R+, η ∈ R+ and µ ∈ R+ in Tτ,η,µ(Σ) can be thought of, respectively, as a sampling time, a
state space and an input space quantization.
We emphasize that transition system Tτ,η,µ(Σ) is countable because the sets Q2 and L2 are countable. Fur-
thermore if the state space of the control system Σ is bounded, the corresponding transition system Tτ,η,µ(Σ)
is finite.
Note that in the definition of the transition relation

2
- we require x(τ, q, l) to be in the closed ball Bη/2(p).

We can instead, require x(τ, q, l) to be in Bλ(p) for any λ ≥ η/2. However, we chose λ = η/2 because η/2 is
the smallest value of λ ∈ R+ that ensures Rn ⊆

⋃
q∈[Rn]η

Bλ(q). In fact, this choice of λ reduces the number
of transitions in the definition of the symbolic model in (4.4).
We can now give the main result of this paper which relates δ–GAS to existence of symbolic model.

Theorem 4.1. Consider a control system Σ and any desired precision ε ∈ R+. If Σ is δ–GAS then for any
τ ∈ R+, η ∈ R+ and µ ∈ R+ satisfying the following inequality:

(4.5) β(ε, τ) + µ+ η/2 ≤ ε,

the transition system Tτ (Σ) is ε–bisimilar to Tτ,η,µ(Σ).
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Before giving the proof of this result we point out that if Σ is δ–GAS, there always exist parameters τ ∈ R+,
η ∈ R+ and µ ∈ R+ satisfying condition (4.5). Indeed since β is a KL function, there exists a sufficiently large
value of τ so that β(ε, τ) < ε; then by choosing sufficiently small values of µ and η, condition (4.5) is fulfilled.

Proof. Consider the relation R ⊆ Q1 × Q2 defined by (x, q) ∈ R if and only if ||x − q|| ≤ ε. By construc-
tion R(Q1) = Q2; furthermore Q1 ⊆

⋃
q2∈Q2

Bη/2(q2) and therefore since by (4.5), η/2 < ε, we have that
R−1(Q2) = Q1. We now show that R is an ε–approximate bisimulation relation between Tτ (Σ) and Tτ,η,µ(Σ).
Consider any (x, q) ∈ R. Condition (i) in Definition 3.2 is satisfied by definition of R. Let us now show
that condition (ii) in Definition 3.2 holds. Consider any l1 ∈ L1 and the transition x

l1

1
- y in Tτ (Σ). Let

v = x(τ, q, l1); since Rn ⊆
⋃
w∈[Rn]µ

Bµ/2(w), there exists w ∈ [Rn]µ such that:

(4.6) ‖v − w‖ ≤ µ/2.
Since v ∈ R(τ, q), it is clear that w ∈ Pµ(τ, q) by definition of Pµ(τ, q). Then, let l2 ∈ L2(q) be given by
l2 = ψτ,qµ (w). By definition of ψτ,qµ and by setting z = x(τ, q, l2), it follows that:

(4.7) ‖w − z‖ ≤ µ/2.
Since Q1 ⊆

⋃
q2∈Q2

Bη/2(q2), there exists p ∈ Q2 such that:

(4.8) ‖z − p‖ ≤ η/2.

Thus, q
l2

2
- p in Tτ,η,µ(Σ) and since Σ is δ–GAS and by (4.6), (4.7), (4.8) and (4.5), the following chain of

inequalities holds:

‖y − p‖ = ‖y − v + v − w + w − z + z − p‖
≤ ‖y − v‖+ ‖v − w‖+ ‖w − z‖+ ‖z − p‖
≤ β(||x− q||, τ) + µ/2 + µ/2 + η/2

≤ β(ε, τ) + µ+ η/2 ≤ ε.
Hence (y, p) ∈ R and condition (ii) in Definition 3.2 holds. We now show that also condition (iii) holds.
Consider any (x, q) ∈ R, any l2 ∈ L2 and the transition q

l2

2
- p in Tτ,η,µ(Σ). By definition of Tτ,η,µ(Σ):

(4.9) ‖z − p‖ ≤ η/2,

where z = x(τ, q, l2) ∈ Q1. Choose l1 = l2 ∈ L1 and consider the transition x
l1

1
- y in Tτ (Σ). Since Σ is

δ–GAS and by conditions (4.9) and (4.5), the following chain of inequalities holds:

‖y − p‖ = ‖y − z + z − p‖ ≤ ‖y − z‖+ ‖z − p‖
≤ β(‖x− q‖, τ) + η/2 ≤ β(ε, τ) + η/2 ≤ ε.

Thus (y, p) ∈ R, which completes the proof. �

Conditions of Theorem 4.1 require the control system Σ to be globally δ–GAS as in Definition 2.2. However, it is
easy to see from the above proof that this stability property can be relaxed to hold locally, i.e. for initial states
x, y ∈ Rn satisfying ‖x− y‖ ≤ ε. Moreover, this stability condition is not far from also being necessary. The
following counterexample shows that unstable control systems do not admit, in general, countable symbolic
models.

Example 4.2. Consider a control system Σ = (R, U,U , f), where U = {0}, U = {0}, 0 is the identically
null input and f(x) = x. System Σ is unstable and hence not δ–GAS. We now show that for any ε ∈ R+

0 ,
any τ ∈ R+ and any countable transition system T , transition systems Tτ (Σ) and T are not ε–bisimilar.
Consider any countable metric transition system T = (Q,L, - ,R, H), with H : Q → R and the same
metric d(p, q) = ‖p− q‖ of Tτ (Σ). Consider any relation R ⊆ Q1 ×Q satisfying conditions (i), (ii) and (iii) of
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Definition 3.2 and such that R(Q1) = Q and R−1(Q) = Q1. We now show that such relation R does not exist.
By countability of T , there exist q0 ∈ Q and x0, y0 ∈ Q1 = R such that x0 6= y0, and (x0, q0), (y0, q0) ∈ R. Set
xk = eτkx0, yk = eτky0, for any k ∈ N. Since x0 6= y0, by selecting λ ∈ R+ such that ‖x0 − y0‖ > λ, we have:

(4.10) ‖xk − yk‖ = eτk‖x0 − y0‖ > eτkλ,∀k ∈ N.

Choose k′ ∈ N so that eτk
′
λ−ε > ε. By condition (iii) in Definition 3.2 and since R(Q1) = Q and R−1(Q) = Q1,

there must exist qk′ ∈ Q so that, (xk′ , qk′), (yk′ , qk′) ∈ R. Since (xk′ , qk′) ∈ R,

(4.11) ‖xk′ −H(qk′)‖ ≤ ε.
By combining inequalities (4.10) and (4.11) and by definition of k′, we obtain:

‖H(qk′)− yk′‖ ≥ ‖xk′ − yk′‖ − ‖xk′ −H(qk′)‖
> eτk

′
λ− ε > ε.(4.12)

Inequality (4.12) shows that the pair (yk′ , qk′) ∈ R does not satisfy condition (i) of Definition 3.2. Hence,
there does not exist an ε–approximate bisimulation relation between Tτ (Σ) and T and consequently Tτ (Σ)
and T are not ε–bisimilar.

Theorem 4.1 relates Tτ (Σ) to the symbolic model in (4.4), whose construction is in general difficult, since it
requires the computation of reachable sets. In the next section we show that for digital control systems a
symbolic model can be obtained by quantizing the input space.

5. Digital control systems

In this section we specialize the results of the previous section to the case of digital control systems, i.e. control
systems where control signals are piecewise–constant. In many man made systems, input signals are often
physically implemented as piecewise–constant signals and this motivates our interest in this class of systems.
In the following we suppose that the input space U of the considered control system Σ = (Rn, U,U , f) contains
the origin and that it is a hyper rectangle of the form U := [a1, b1] × [a2, b2] × ... × [am, bm], for some
ai < bi, i = 1, 2, ...,m. Furthermore we suppose that control inputs are piecewise–constant; given τ ∈ R+, the
class of inputs that we consider is:

Uτ := {u ∈ U : u(t) = u(0), t ∈ [0, τ ]}.
For notational simplicity, we denote by u the control input u ∈ Uτ for which u(t) = u, t ∈ [0, τ ].
Let us denote by TUτ (Σ) the sub–transition system of Tτ (Σ) where only control inputs in Uτ are considered.
More formally define:

TUτ (Σ) := (Q1, L1,
1
- , O1, H1),

where:

• Q1 = Rn;
• L1 = {l1 ∈ U | x(τ, x, l1) is defined for all x ∈ Rn};
• q l

1
- p, if x(τ, q, l) = p;

• O1 = Rn;
• H1 = 1Rn .

Transition system TUτ (Σ) is metric when we regardO = Rn as being equipped with the metric d(p, q) = ‖p− q‖.
Note that analogously to Tτ (Σ), transition system TUτ (Σ) is not countable. Therefore we now define a suitable
countable transition system that will approximate TUτ (Σ) with any desired precision.
Given a control system Σ, any τ ∈ R+, η ∈ R+ and µ ∈ R+, define the following transition system:

(5.1) Tτ,η,µ(Σ) := (Q2, L2,
2
- , O2, H2),

where:
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• Q2 = [Rn]η;
• L2 = [L1]µ;

• q l

2
- p, if ‖p− x(τ, q, l)‖ ≤ η/2;

• O2 = Rn;
• H2 = ı : Q2 ↪→ O2.

Analogously to transition system in (4.4), transition system in (5.1) is countable. Notice that transition system
in (5.1) differs from the one in (4.4), (only) in the way that control inputs are approximated. In particular,
the choice of labels in transition system in (5.1) does not require the knowledge of reachable set associated
with Σ. This feature is essential when constructing the symbolic model. The computation of x(τ, q, l) can
be done either analytically or numerically; in the later case, numerical errors can be incorporated in the
model, as follows. Suppose there exists a parameter ν ∈ R+

0 so that for any state q ∈ Q2 and control input
l ∈ L2, it is possible to evaluate x(τ, q, l) by means of the numerical solution x̃(τ, q, l) with precision ν, i.e.
‖x(τ, q, l) − x̃(τ, q, l)‖ ≤ ν. Then, the transition relation

2
- in the transition system of (5.1), can be

adapted to this case by requiring that q
l

2
- p, if ‖p− x̃(τ, q, l)‖ ≤ η/2− ν. In fact:

‖p− x(τ, q, l)‖ ≤ ‖p− x̃(τ, q, l)‖+ ‖x̃(τ, q, l)− x(τ, q, l)‖
≤ η/2− ν + ν = η/2,

and therefore we can recover transition relation
2
- , as defined in transition system (5.1).

We can now state the following result that relates δ–ISS to the existence of symbolic models for digital control
systems.

Theorem 5.1. Consider a control system Σ and any desired precision ε ∈ R+. If Σ is δ–ISS then for any
τ ∈ R+, η ∈ R+, and µ ∈ R+ satisfying the following inequality:

(5.2) β(ε, τ) + γ(µ) + η/2 ≤ ε,

the transition system TUτ (Σ) is ε–bisimilar to Tτ,η,µ(Σ).

Before giving the proof of this result we point out that, analogously to condition (4.5) of Theorem 4.1, there
always exist parameters τ ∈ R+, η ∈ R+, and µ ∈ R+ satisfying condition (5.2).

Proof. Consider the relation R ⊆ Q1 ×Q2 defined by (x, q) ∈ R if and only if ||x − q|| ≤ ε. By construction
R(Q1) = Q2; since Q1 ⊆

⋃
q2∈Q2

Bη/2(q2) and by (5.2), η/2 < ε, we have that R−1(Q2) = Q1. We now show
that R is an ε–approximate bisimulation relation between TUτ (Σ) and Tτ,η,µ(Σ). Consider any (x, q) ∈ R.
Condition (i) in Definition 3.2 is satisfied by the definition of R. Let us now show that condition (ii) in
Definition 3.2 holds. Consider any l1 ∈ L1 and the transition x

l1

1
- y in TUτ (Σ). Consider a label l2 ∈ L2

such that:

(5.3) ‖l1 − l2‖ ≤ µ,

and set z = x(τ, q, l2). (Notice that such label l2 ∈ L2 exists because the assumptions on U make L2 = [L1]µ
non–empty.) For later use notice that since l1 and l2 are constant functions, then ‖l1 − l2‖ = ‖l1 − l2‖∞.
Since Q1 ⊆

⋃
q2∈[Rn]η

Bη/2(q2), there exists p ∈ Q2 such that:

(5.4) ‖z − p‖ ≤ η/2,
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and therefore q
l2

2
- p in Tτ,η,µ(Σ). Since Σ is δ–ISS and by (5.3), (5.4) and (5.2), the following chain of

inequalities holds:

‖y − p‖ = ‖y − z + z − p‖ ≤ ‖y − z‖+ ‖z − p‖
≤ β(‖x− q‖, τ) + γ(‖l1 − l2‖∞) + η/2

≤ β(ε, τ) + γ(µ) + η/2 ≤ ε.(5.5)

Hence (y, p) ∈ R and condition (ii) in Definition 3.2 holds. We now show that also condition (iii) holds.
Consider any (x, q) ∈ R, l2 ∈ L2 and the transition q

l2

2
- p in Tτ,η,µ(Σ). By definition of Tτ,η,µ(Σ)

(5.6) ‖z − p‖ ≤ η/2,

where z = x(τ, q, l2) ∈ Q1. Choose l1 = l2 ∈ L1 and consider now the transition x
l1

1
- y in TUτ (Σ). Since Σ

is δ–ISS and by (5.6) and (5.2), the chain of inequalities in (5.5) holds. Thus (y, p) ∈ R, which completes the
proof. �

6. Symbolic control design for a pendulum

One of the simplest mechanical control systems studied in the literature is the pendulum which can be described
by:

(6.1) Σ :
{

ẋ1 = x2,
ẋ2 = − gl sin x1 − k

mx2 + u,

where x1 and x2 are the angular position and velocity of the point mass, u is the torque which represents the
control variable, g = 9.8 is the gravity acceleration, l = 5 is the length of the rod, m = 0.5 is the mass and
k = 3 is the coefficient of friction. All constants and variables in system Σ are expressed in the International
System. We assume that u ∈ U = [−1.5, 1.5] and that control inputs of Σ are piecewise–constant. For
simplicity we work on the subset X = [−1, 1]× [−1, 1] of the state space of Σ.
In order to apply Theorem 5.1 we need to check if system Σ is δ–ISS. Consider the function V : R2×R2 → R+

0

defined by:

V (x, y) =
1
2

(x− y)′
[

1
2

(
k
m

)2 1
2
k
m

1
2
k
m

1
2

]
(x− y).

It is possible to show that V satisfies condition (i) of Definition 2.4 with α1(r) = 0.49 r2 and α2(r) = 18.51 r2.
Moreover, by defining for any z1, z2 ∈ R,

ζ(z1, z2) = (sin(z1)− sin(z2))/(z1 − z2),

one obtains ζmin = minz1,z2∈[−1,1] ζ(z1, z2) = 0.84 and ζmax = maxz1,z2∈[−1,1] ζ(z1, z2) = 1 and hence:

∂V

∂x
f(x, u) +

∂V

∂y
f(y, v) = −1

2
k

m

g

l
ζ(x1, y1)(x1 − y1)2

−g
l
ζ(x1, y1)(x1 − y1)(x2 − y2)− 1

2
k

m
(x2 − y2)2

+
(

1
2
k

m
(x1 − y1) + x2 − y2

)
(u− v)

≤ −1
2
a‖x− y‖22 + b|u− v|,(6.2)

where a = k
m min

{
g
l ζmin, 1

}
− g

l ζmax = 4.04 > 0, b = (2 + k
m ) = 8 > 0. Hence, condition (iii) of Definition

2.4 is satisfied with ρ(r) = a r2 and σ(r) = b r, and V is a δ–ISS Lyapunov function for Σ. By Theorem 2.5 we
conclude that the control system Σ is δ–ISS. Using inequality (6.2), the definition of V and the comparison
lemma [Kha96], it is possible to show that for any x, y ∈ X, any u, v ∈ U and any time t ∈ R+

0 :

‖x(t, x, u)− x(t, y, v)‖ ≤ β(‖x− y‖ , t) + γ(‖u− v‖∞),
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where β(r, s) := 6.17 e−2.08 sr and γ(r) :=
√

3.96 r for any r, s ∈ R. Functions β and γ are respectively KL
and K∞ functions and thus inequality (2.2) is satisfied. We now have all the ingredients to apply Theorem
5.1. Condition (5.2) becomes:

(6.3) 6.17 e−2.08 τε+
√

3.96µ+ η/2 ≤ ε.
For a precision ε = 0.25 we can choose η = 0.4, τ = 2 and µ = 1.5 · 10−4 so that inequality (6.3) is satisfied.
The resulting transition system:

(6.4) Tτ,η,µ(Σ) = (Q2, L2,
2
- , O2, H2),

is defined by:

• Q2 = {−2η,−η, 0, η, 2η} × {−2η,−η, 0, η, 2η};
• L2 = [U ]1.5·10−4 ;
•

2
- is depicted in Figure 1;

• O2 = X;
• H2 = ı : Q2 ↪→ O2,

and shown in Figure 1 where the transition relation
2
- has been obtained by numerically integrating the

trajectories of Σ.
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Figure 1. Symbolic model T2,0.4,1.5·10−4(Σ) associated with the control system Σ of (6.1).
A state (η i, η j) in T2,0.4,1.5·10−4(Σ) with i, j = −2,−1, 0, 1, 2 corresponds to the state 5 (i +
2) + j + 3 in the above picture.

We now illustrate the use of the symbolic model (6.4) for controller synthesis. Suppose that our objective
is to design a controller enforcing an alternation between two different periodic motions denoted by P1 and
P2. Periodic motion P1 requires the state of Σ to cycle between (−η, 0) and (0, 0) while periodic motion P2

requires the state to cycle between (−η, 0) and (η, 0). The control objective is then the design of a controller
that enforces system Σ to satisfy a specification P requiring the execution of the sequence of periodic motions
P1, P1, P2, P1, P1. This specification is a simple illustration of more complex control objectives that typically
require different sequencing of actions in response to exogenous events such as faults or to events triggered by
the violation of certain thresholds on the continuous state. This kind of specifications will naturally result in
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a hybrid controller combining the continuous inputs necessary to drive the continuous state with the discrete
logic responsible for executing the right sequence of actions in response to different conditions. A control
strategy for periodic motions P1 and P2 can be obtained by performing a simple search1 on T2,0.4,1.5·10−4(Σ)
or by using standard methods in the context of supervisory control [RW87] or algorithmic approaches to game
theory [AVW03]. One possible solution enforcing P1 is:

(−η, 0)
1.38- (0, 0)

−1.5- (−η, 0),

and for P2 is:
(−η, 0)

1.5- (0, η)
1.5- (η, 0)

−1.5- (0,−η)
−0.71- (−η, 0).

A control strategy that enforces the specification P can be obtained by concatenating the trajectories associated
with P1, P1, P2, P1 and P1, resulting in:

(−η, 0)
1.38- (0, 0)

−1.5- (−η, 0)
1.38- (0, 0)

−1.5- (−η, 0)
1.5- (0, η)

1.5- (η, 0)
−1.5- (0,−η)

−0.71- (−η, 0)
1.38- (0, 0)

−1.5- (−η, 0)
1.38- (0, 0)

−1.5- (−η, 0).

Since by Theorem 5.1, T2,0.4,1.5·10−4(Σ) is 0.25–bisimilar to TU2(Σ), the notion of approximate bisimulation
guarantees that the controller synthesized on T2,0.4,1.5·10−4(Σ), will enforce the desired behavior on Σ with an
error of at most 0.25. Figure 2 shows the evolution of the state variables of Σ, when applying such control
strategy. It is easy to see that at each time i τ with i = 1, ..., 12 the state variables x1 and x2 are within the
interval marked in red, which represents the desired precision ε = 0.25. For example, at time t = 2 τ = 4 the
angular position x1 of system Σ is in the interval −η + [−ε, ε] = [−0.65,−0.15], as required by P1 and the
approximation error ε. Although we could have designed continuous controllers enforcing P1 and P2 and then
devise a switching logic enforcing specification P , as is currently done in practice, we could not guarantee
what would happen to the closed loop system due to the difficulty in analyzing the combination of continuous
controllers with switching logic (see e.g. [Lib03]). On the contrary, the methodology that we propose offers a
systematic controller design process that requires reduced user intervents.

7. Discussion

The work presented in this paper compares as follows with the available results of the research lines recalled
in the introduction.

Simulation/bisimulation: The results in this paper follow the research line of [Tab07a] and provide impor-
tant generalizations:
(i) The definition of the symbolic model in [Tab07a] relies on an (arbitrary) a–priori choice of control inputs,
while the symbolic model in (4.4) captures the effect of any measurable control input;
(ii) The approximation notion employed in [Tab07a] is approximate simulation2 while the results in this paper
guarantee the stronger notion of approximate bisimulation.
These generalizations are quite important from the controller synthesis point of view. The main drawback of
the results in [Tab07a] is that if a controller fails to exist for the symbolic model, nothing can be concluded
regarding the existence of a controller for the original control system. Our results guarantee, instead, that
given a control system and a specification, a controller exists for the original model if and only if a controller
exists for the symbolic model. Notice that while δ–GAS implies asymptotic stabilizability as employed in The-
orem 2 of [Tab07a], the converse is not true in general3. Furthermore even if a feedback control law rendering
the closed–loop system δ–GAS were found, if the input space of the control system is bounded, there is no

1States (−η, 0), (0, 0), (0, η), (η, 0) and (0,−η) involved in the specifications P1 and P2, correspond respectively to states 8,
13, 14, 18 and 12 in Figure 1.

2 We recall from [GP07] that an ε–approximate simulation relation from T1 to T2 is a relation R which satisfies conditions (i)
and (ii) in Definition 3.2.

3In fact the converse is true in the case of linear control systems.
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Figure 2. Upper and medium panels: trajectory of (x1, x2), with initial condition (−η, 0) and
control strategy synthesized on T2,0.4,1.5·10−4(Σ). Vertical intervals marked in red represent
the precision ε = 0.25 that we require. Lower panel: Control strategy synthesized on
T2,0.4,1.5·10−4(Σ).

guarantee that such feedback would satisfy the input constraints.
The results in this paper share similar ideas with the ones in [Gir07] that considers discrete–time linear control
systems. When we regard discrete–time control systems as the time discretization of continuous–time control
systems, Theorem 5.1 extends Theorem 4 of [Gir07] in two directions:
(i) by enlarging the class of control systems from linear to nonlinear;
(ii) by enlarging the class of input signals from piecewise–constant to measurable.
When specializing results of this paper to the class of linear control systems, conditions of Theorems 4.1 and
5.1 simplify. In fact given a linear control system:

ẋ = Ax+Bu, x ∈ Rn, u ∈ U ⊆ Rm,

the notions of δ–GAS and δ–ISS reduce to asymptotic stability of matrix A and functions β and γ appearing
in inequalities (2.1) and (2.2) can be chosen as:

β(r, s) = ‖eAs‖r; γ(r) =
(
‖B‖

∫ ∞
0

‖eAs‖ds
)
r,(7.1)

where ‖eAs‖ denotes the infinity norm of the matrix4 eAs. The use of explicit expressions in (7.1) for β and
γ simplifies indeed the search of parameters τ , η and µ satisfying conditions of Theorems 4.1 and 5.1, and
hence the construction of symbolic models in (4.4) and (5.1). Furthermore, in contrast to the nonlinear case,
the construction of the symbolic models can be performed even for non-constant inputs. This can be done by
using results on polytopic approximation of reachable sets for linear control systems (see e.g. [Var98], [Gir05])
with compact input space. It is known from [Var98] that for any desired precision ν ∈ R+, the reachable set
R(τ, q) of (4.2) can be approximated by a polytope P (τ, q), so that dh(P (τ, q),R(τ, q)) ≤ ν, where dh is the
Hausdorff pseudo–metric5 induced by the metric d. The countable set Pµ(τ, q), can then be reformulated in
terms of P (τ, q) rather than of R(τ, q), as follows:

Pµ(τ, q) := {y ∈ [Rn]µ : ∃z ∈ P (τ, q) s.t. ‖y − z‖ ≤ µ/2}.

4For M = {mij} ∈ Rn×m, ‖M‖ := max1≤i≤m
Pn

j=1|mij |.
5We recall that for any X1, X2 ⊆ Rn, dh(X1, X2) := max{~dh(X1, X2), ~dh(X2, X1)}, where ~dh(X1, X2) :=

supx1∈X1
infx2∈X2 d(x1, x2).
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The symbolic model in (4.4) can be adapted to the case of linear systems by defining the set L2(q) by:

(7.2) L2(q) := Pµ(τ, q)

and the transition relation
2
- by:

q
l

2
- p, if ‖p− x(τ, q, 0)− l‖ ≤ η/2.(7.3)

Since the sets P (τ, q) and L2(q) can be computed the symbolic model (4.4) with L2(q) given by (7.2) and

2
- given by (7.3), can be constructed. Finally condition (4.5) of Theorem 4.1 can be adapted to this case,

resulting in ‖eAτ‖ε+ ν + µ+ η/2 ≤ ε.

Quantized control systems: In [BMP02, BMP06] finite abstractions of quantized control systems are
studied. In particular, conditions on the systems parameters and on the input set are found so that the
resulting abstraction is characterized by a lattice structure in the set R of reachable states. Our results
ensure, under the δ–ISS assumption, existence of a lattice approximating R, independently from the system
parameters and input set. More precisely a direct consequence of Theorem 5.1 is that if a digital control system
Σ is δ–ISS then any state x ∈ R can be approximated with any desired precision ε ∈ R+, by a (symbolic)
state q ∈ [Rn]ε so that ‖x− q‖ ≤ ε/2. However, while our results guarantee to approximate R by the lattice
[Rn]ε with any (arbitrarily small) precision ε ∈ R+, results established in [BMP02, BMP06] guarantee that R
is exactly a lattice.

Qualitative reasoning and Stochastic automata: Symbolic models have been also proposed in the
framework of qualitative reasoning (see e.g. [RK03, Kui94]) and in the stochastic automata based abstraction
of [LN01, Sch03]. In both approaches the proposed models are characterized by a “completeness” property
under which, any trajectory of the control system can be mimicked by a trajectory of the proposed symbolic
models. On the other hand, for any trajectory of the symbolic models there may not exist a corresponding
matching trajectory in the control systems. In both approaches no stability assumptions are needed to ensure
the completeness property. An interpretation in terms of bisimulation theory, is that these results guarantee
existence of a surjective exact simulation relation6 from the control systems to the symbolic models. However,
analogously to the results in [Tab07a] the main drawback of these approaches is that if a controller fails to
exist for the proposed symbolic models, nothing can be concluded regarding the existence of a controller for
the original control system. As pointed out before, this drawback can be overcome by considering a notion of
approximate bisimulation, whose existence is ensured by δ–ISS of the control system (see Theorem 5.1).

The results in Section 5 provide a first step towards the effective computation of symbolic models for digital
control systems. However, further work is required towards the design of efficient algorithms for constructing
the symbolic model proposed in (5.1). In particular, the main critical issues are related with:
(i) the choice of parameters τ, η, µ, which translates, by inequality (5.2), in finding a δ–ISS Lyapunov function
for the control system;
(ii) the cardinality of Q2 and L2, which increases exponentially with the dimension of the state and input
spaces of the control system.
The computation of δ–ISS Lyapunov functions is in general a hard task. However, one can resort to numerical
tools available in the literature, as for example the one proposed in [PPP02]. Furthermore, a way for mitigating
the exponential grow in the sizes of Q2 and L2 is to adapt techniques from on-the-fly verification of transition
systems [TA99] to the construction of the proposed symbolic models. This will be the object of future
investigations.
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